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There is growing interest in using spatially explicit, individual-based forest simulation mod-

els to explore the ecological and silvicultural consequences of various harvesting regimes.

However, simulating the dynamics of managed forests requires harvesting algorithms capa-

ble of accurately mimicking the harvest regimes of interest. Under selection silviculture,

trees are harvested individually or in small groups, with the aim of retaining trees across a

full range of size classes. An algorithm that reproduces selection harvesting must therefore

be able to recreate both the spatial and the structural patterns of harvest. Here we intro-

duce a selection harvest algorithm that simulates harvests as a contagious spatial process

in which the cutting of one tree affects the probability that neighboring trees are also cut.

Three simple and intuitive parameters are required to implement this process: (1) the prob-

ability of cutting a “target” tree (Pt) (often a function of tree size), (2) the probability of cutting

its nearest neighbor (Pn), and (3) the total number of target trees to cut (Nt). Specification

of these parameters allows representation of both the spatial and the structural patterns of

harvest expected under selection silviculture.

Based on this simple process, we built two different versions of the harvesting algorithm.

An “empirical” algorithm was designed and calibrated to reproduce the observed spatial

and size distribution of stumps (harvested trees) at a study site in central Ontario, and

was successful in reproducing harvesting patterns found in the field, notably variability in

the cluster size of harvested trees. The “user-defined” algorithm implements alternative

harvesting regimes (user-defined harvest targets), which may differ in the intensity of har-

vesting, the size-specificity of harvesting, and the spatial pattern of harvesting. We show

that the user-defined harvesting algorithm succeeds in meeting harvest targets specified by

the user (e.g., size class distribution and basal area of trees harvested), while simultaneously

adjusting the gap size specified (i.e., the distribution of harvested trees per cluster). Incor-

poration of this harvesting algorithm into spatially explicit, individual-based models will
permit analyses of long-term responses of forest stands to harvesting scenarios that more

realistically capture the complex patterns of within-stand variability generated by selection

silviculture as practiced in actual managed forests.
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1. Introduction

Individual-based models have long been used to simulate
natural forest dynamics because canopy gaps formed by the
death of individual trees play an important role in main-
taining species diversity and productivity (Botkin et al., 1972;
Bormann and Likens, 1979; Shugart, 1984; DeAngelis and
Gross, 1992; Pacala and Deutschman, 1995). For example, indi-
vidual canopy gaps allow tree species that are only moderately
tolerant of shade to coexist with species that cast and tolerate
deep shade, provided that the less tolerant species are bet-
ter able to colonize and/or capture single-tree gaps (Tilman,
1994; Pacala and Rees, 1998). Thus, models that can resolve
individual gaps are able to simulate gap-phase regeneration,
and thereby predict the observed persistence of mid-tolerant
species in old-growth stands (Pacala et al., 1996). The ability
to resolve individual gaps is also advantageous for simulat-
ing processes that depend on gap size, such as the process
of gap-size partitioning, whereby shade-intolerant trees can
coexist with more tolerant species if they are better able to
colonize and/or capture large gaps formed by natural distur-
bances (Busing and White, 1997; Busing and Mailly, 2004).

Over the last decade, there has been a growing effort to
develop individual-based models that can simulate dynamics
of managed forests that are subject to periodic partial har-
vests (e.g., Pausas et al., 1997; Coates et al., 2003; Pennanen
et al., 2004). While much effort on this topic has focused on
model parameterization and analysis of long-term impacts,
an additional critical aspect is the development of harvesting
algorithms that accurately mimic the structural patterns of
partial harvesting regimes (Söderbergh and Ledermann, 2003).
For example, several existing harvesting algorithms allow the
user to specify standard harvest targets: either the amount
to be harvested from each diameter class, or the amount to
be retained in each diameter class (e.g., Solomon et al., 1995;
McCarter et al., 1998; Gustafson et al., 2000; Huth and Ditzer,
2001). Few algorithms, however, allow the user to simulta-
neously modify the spatial pattern of harvesting to attain a
particular gap size distribution (Coates et al., 2003), despite
the fact that the gap size distribution is one of the defining
traits of a forest disturbance regime (Seymour and Hunter,
1999). Furthermore, harvesting algorithms developed to date
have been rarely evaluated against field data to determine how
well they reproduce observed harvesting patterns. Clearly, har-
vesting algorithms that can accurately reproduce both the
structural and spatial pattern of harvesting must be developed
and tested in order to have confidence in simulations of gap
dynamics in managed forests.

Selection silviculture is practiced throughout eastern North
America, in parts of western North America, and also in
Europe (O’Hara, 2002; Pommerening and Murphy, 2004). Under
standard selection silviculture, trees are harvested individu-
ally, or in small groups, with the aim of retaining trees across
a full range of size classes (Nyland, 1998; OMNR, 1998). In east-
ern North America, the typical selection harvesting regime

removes one third of the basal area every 20 years, and the
size distribution of residual trees typically is approximated
by a negative exponential distribution (many stems in small
diameter classes and few stems in larger diameter classes).
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In southern and central Ontario, the standard harvest regime
leaves residual trees that conform to a modified Arbogast dis-
tribution (Arbogast, 1957, see OMNR, 2004 for more details).

Despite these standard procedures, harvesting regimes do
vary from one management unit to the next, depending on the
structure and the composition of the forest, and the objectives
of the manager (Hansen and Nyland, 1987; OMNR, 1998). For
example, a manager may modify the number of trees to be
harvested, or their distribution across size classes, to optimize
timber yields. Managers may also modify the spatial pattern
of harvesting to encourage the regeneration of tree species
that are less tolerant of shade. For example, group selection in
southern Ontario calls for creation of multi-tree gaps (as large
as 0.2 ha) that are interspersed among single-tree gaps (OMNR,
2004). In addition, logistical considerations, in particular phys-
ical impacts related to the felling and skidding of harvested
timber (and minimization of such impacts), very commonly
result in multi-tree gaps. Thus, even in cases where the objec-
tive is single-tree selection, gaps of various sizes are inevitably
created during harvesting operations.

In this paper, we describe and test a harvesting algo-
rithm designed to simulate selection silviculture as practiced
in the tolerant hardwood forests of central Ontario, Canada.
There were three objectives that guided the design of our
harvesting algorithm. The first objective was to mimic the
harvesting regime employed at our primary field site, the Hal-
iburton Forest and Wildlife Reserve. In particular, we designed
the algorithm so that it could reproduce the observed spa-
tial distribution of harvested trees (hereafter “stumps”) and
their observed diameter distribution. The second objective
was to design the algorithm so that it could also simulate
alternative harvesting regimes, including regimes that may
differ in the intensity of harvesting, the size-specificity of
harvesting, and the spatial pattern of harvesting. The third
objective was to design the algorithm so that it would be
simple to use (i.e., has just a few intuitive parameters) and
could be implemented in any spatially explicit individual-
based forest simulator, including the most recent version of
SORTIE-ND (http://www.sortie-nd.org/index.html). To achieve
these objectives, we developed two different versions of the
harvesting algorithm: the first is called the “empirical” version
since it was designed to reproduce the patterns found in field
data; the second is called the “user-defined” version to indicate
that the user can implement alternative harvesting regimes in
SORTIE, or any other spatially explicit individual-based model
where each individual (or a tree) within the model has its
own unique spatial coordinate within a simulated stand (e.g.,
Pretzsch et al., 2002; Parrott and Kok, 2001; Nuttle and Haefner,
2007). However, we shall refer to both versions as “nearest
neighbor” algorithms to emphasize the underlying process
used to simulate harvesting, and to distinguish them from
other spatially explicit harvesting algorithms (Söderbergh and
Ledermann, 2003).

2. The nearest neighbor algorithm
Both the empirical and user-defined versions simulate har-
vesting as a contagious spatial process in which the cutting
of one tree affects the probability that neighboring trees are

http://www.sortie-nd.org/index.html
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lso cut. The algorithm is thus similar in some respects to
he approaches used to simulate the spread of fire in forests
Drossel et al., 1993; Malamud et al., 1998). Here, we provide

brief description of the nearest neighbor algorithm, focus-
ng on the contagious process and the parameters that govern
he spatial distribution of stumps in the simulation. In subse-
uent sections, we will describe the algorithm in more detail,

ncluding the parameters that dictate the size distribution of
tumps, and the methods used to calculate parameter values
rom field data.

At least three parameters are required to run the nearest
eighbor algorithm: (1) the probability of cutting a “target”
ree (Pt), (2) the probability of cutting its nearest neighbor
Pn), and (3) the total number of target trees to cut (Nt). Once
hese parameters are specified, the nearest neighbor algo-
ithm begins by searching for the largest tree in the stand and
hen by cutting the tree with the probability of Pt. If the target
ree is cut, the algorithm then searches for the nearest neigh-
or of the stump, and draws another random number between
and 1; if the random number is greater than Pn, the nearest
eighbor remains standing, in which case we refer to the orig-

nal stump as a “singleton”; if the random number is less than
r equal to Pn, the algorithm cuts the nearest neighbor as well,

n which case we refer to the two stumps as a “pair”, indicat-
ng that at least one of the stumps is the other stump’s nearest
eighbor.

Once the nearest neighbor is also cut, this contagious pro-
ess may continue to propagate: the algorithm searches for
he nearest neighbor of the second stump, and cuts the near-
st neighbor with the probability Pn. In this way, harvesting
preads from one tree to the next, until a random number
xceeds Pn, at which point the contagious process terminates.
ereafter, we will refer to the resulting stumps as a “group”,
hich includes the nearest neighbor of all its member stumps,
ith the possible exception of the last stump to be cut. Finally,
e will refer to all stump categories (singletons, pairs, and

roups) as “clusters”, and we will use the terms cluster and
ap interchangeably.

Once the contagious process has terminated, the algorithm
earches for the next largest live tree in the stand, then cuts
his second target tree with the probability Pt, and thereby
einitiating the contagious process described above. The algo-
ithm continues to cut the target trees (proceeding from the
argest to the smallest trees in a stand), and their neighbors,
ntil it has cut Nt target trees.

For the empirical version of the algorithm, all three param-
ter values are calculated directly from field data, but in the
ser-defined version they are specified by the model user.

.1. Gap size distribution

here are three important features of the nearest neighbor
lgorithm: (1) it creates gaps (clusters) of various sizes, (2) the
ize distribution of gaps can be modified by changing the value
f Pn, and (3) the theoretical size distribution of gaps can be cal-
ulated from the value of P : the probability of a gap containing
n

stumps is (1 − Pn)P(x−1)
n . For most values of Pn, the distribution

f gap sizes approximates a negative exponential distribution.
owever, the algorithm does afford some flexibility in speci-

ying the shape of the gap size distribution: the distribution is
1 ( 2 0 0 8 ) 251–266 253

rather flat when Pn > 0.9, all stumps will be singletons when
Pn = 0, and all trees will be cut when Pn = 1.

2.2. When the nearest neighbor is already a stump

As a cluster grows, it is possible that it will “run into” another
cluster, as happens when the nearest neighbor of a recently
cut stump is already a stump. At this point, the algorithm
would normally cut the nearest neighbor with a probability
of Pn, and the contagious process would continue to spread.
In the event of running into another cluster, we considered ter-
minating the contagious process and preventing the current
cluster from growing any further. However, this might limit the
size of clusters, and thereby truncate the tail of the gap size
distribution. Therefore we decided to terminate or grow the
current cluster, depending on the value of the random num-
ber: if the random number is less than Pn the cluster is allowed
to grow, otherwise the nearest neighbor is “resurrected” (its
status is reassigned to live), and the cluster growth is termi-
nated. In addition, to reduce the probability that clusters run
into one another, we modified the algorithm so that it does not
select target trees whose nearest neighbor is already a stump.
As a result, target trees are more spatially dispersed than if
chosen at random.

2.3. Other factors limiting gap size

In practice, the gap size distribution of a simulated har-
vest is expected to deviate somewhat from the theoretical
distribution given above for several reasons. First, the conta-
gious harvesting process may be interrupted if the simulation
domain is too small, or the simulation domain is divided into
grids beyond which the process cannot spread, in which case
the tail of the size distribution will be truncated. Second,
the contagious harvesting process may also be interrupted
whenever both trees in an adjacent pair are each other’s near-
est neighbor, because contagious harvesting cannot spread
beyond such a pair (see Section 3.7.1 for more detail on recip-
rocal tree pairs). In this case, the tail of the size distribution
will also be truncated. Finally, since the algorithm is stochas-
tic, the realized size distribution may differ from expected size
distribution by chance alone, particularly when the number of
target trees to be harvested (Nt) is small.

3. The empirical algorithm

3.1. Study site and data collection

The field data used for the empirical algorithm were collected
in Haliburton Forest and Wildlife Reserve (45◦15′N, 78◦34′W)
as part of a related study on tree growth (Jones, 2006). As is
typical of the Great Lakes—St. Lawrence region (Rowe, 1972),
the upland hardwood forests of Haliburton Forest are domi-
nated by sugar maple (Acer saccharum Marsh.), American beech
(Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis (L.)

Carrière), and yellow birch (Betula alleghaniensis Britt.). The for-
est has been managed under selection silviculture for the past
40 years, and was selectively harvested for yellow birch and
white pine (Pinus strobus L.) prior to that time. The spatial



i n g
254 e c o l o g i c a l m o d e l l

extent and harvest date of each cut-block has been recorded
for the last 20 years.

Here we used 11 cut-blocks representing 6 harvest years
(1994, 1997, 1998, 2001, 2002 and 2003) for this study. In the
summer of 2004, a network of plots was established within
each cut-block using a systematic sampling protocol. The plot
locations were selected by walking down primary skid trails
and stopping every 100 m to place one plot on each side of
the skid trail, at a distance of 50 m from the skid trail. The
plots were 20 m in radius, and every stem (tree and stump)
greater than 8 cm DBH within the plot was mapped (only trees
above 10 cm DBH was used for this study). For each live tree,
DBH was measured at 1.3 m. For stumps, diameter was mea-
sured at the highest point, and was used to approximate DBH
at 1.3 m (when the DBH was rounded to nearest centimeter,
there were no significant difference when between the two
values). A total of 111 plots and 5477 stems were mapped, cov-
ering a combined area of approximately 14 ha. Of these, 75%
of the plots were used for model calibration (84 plots), and the
remaining 25% was used for model validation (27 plots).

While the basal area of stumps accurately reflects the
amount of wood harvested in a particular year, the basal area
of live trees is somewhat greater than the standing crop at the
time of harvest, since growth has occurred since the time of
harvest. Thus, this may introduce some bias when comparing
the basal area of live trees against that of stumps. However,
given that the average time since harvest was only approxi-
mately 3.9 years, we simply assumed that the basal area of
live trees provides an adequate measure of the basal area at
the time of harvest.

3.2. Calibration of the empirical algorithm

The empirical version of the algorithm was designed to repro-
duce both the diameter distribution of stumps and the spatial
distribution of stumps. To reproduce the size distribution,
we allowed the probability of cutting a target tree (Pt) to
depend on the diameter of the target tree at breast height
(DBH), and used five discrete diameter classes that are com-
monly used to specify harvesting targets in southern Ontario
(OMNR, 2000): polewood (10 cm ≤ DBH < 26 cm), small sawlogs
(26 cm ≤ DBH < 38 cm), medium sawlogs (38 cm ≤ DBH < 50 cm),
large sawlogs (50 cm ≤ DBH < 62 cm), and extra-large sawlogs
(DBH ≥ 62 cm). Thus, the probability of cutting down a tar-
get tree is specified by five parameters: Pt(pole), Pt(small),
Pt(med), Pt(large), Pt(x-large). The values of these parameters were
obtained from the field data by simply calculating the propor-
tion of stumps in each diameter class. Hereafter we will use
the hat symbol (∧) to denote parameter values that are calcu-
lated from the calibration dataset (list of symbols used in this
article is provided in Appendix A).

The value of this parameter was obtained from the field
data by calculating the proportion of stumps whose nearest
neighbor is also a stump (P̂n). For example, if there were 100
stumps in the entire calibration dataset, and 20 of these had
a stump as their nearest neighbor, then P̂ would be equal to
n

20/100, or 0.2.
The value of the parameter Nt was obtained by calculat-

ing the number of clusters in each plot (N̂t(plot)), and the total
number of clusters (N̂t) in the entire calibration dataset. As
2 1 1 ( 2 0 0 8 ) 251–266

described in Section 2, a cluster may consist of a singleton,
a pair, or a group of stumps, each of which is defined by the
number of nearest neighbors included in the cluster. Thus, it is
possible to divide stumps into clusters based on the status (live
or stump) of their nearest neighbor. This clustering method is
most readily explained using terminology from graph theory
(Bollobás, 2002) as shown in Appendix B.

3.3. Testing whether the spatial distribution of stumps
is non-random

To test whether stumps are non-randomly distributed, we
compared the proportion of stumps whose nearest neighbor
is a stump (P̂n) to the proportion that would be expected if
stumps were randomly distributed (P̂n(rand)). The proportion
expected at random was calculated by first randomly reas-
signing the status of each stem while maintaining the same
number of stumps in each plot, then recalculating the propor-
tion of stumps whose nearest neighbor is a stump (P̂n(rand)).
This randomization procedure was repeated 10,000 times, so
that the mean value of P̂n(rand) could be calculated and com-
pared to the observed proportion P̂n. We plotted P̂n on the
frequency distribution of P̂n(rand) to determine probability of
obtaining the observed value of P̂n by chance alone.

3.4. Simulating harvest using field data as input

The empirical version of the algorithm can run on any tree
map that includes the diameter and spatial coordinates of
each tree, whether the tree map is produced by an individual-
based forest simulator, or obtained from mapped plots. Here,
we summarize the four steps taken by the algorithm to sim-
ulate a harvest using data from mapped plots as input: (1)
the algorithm reads the tree map into memory. (2) All trees
in the tree map are assigned a “live tree” status, but size
and the spatial coordinates of trees are retained. (3) The algo-
rithm searches for the largest tree in the plot and initiates
the nearest neighbor algorithm (see Section 2). In the empiri-
cal algorithm, the probability of cutting a target tree is P̂t(size),
while the probability of cutting the nearest neighbor is Pn. (4) If
the number of target trees harvested in the plot equals N̂t(plot),
the algorithm moves on to the next plot; if not, the algorithm
repeats steps 3 and 4, after choosing the next largest tree in
the plot.

Once the harvesting is completed in all the plots, the algo-
rithm terminates and produces simulated tree maps of all
the harvested plots. These output tree maps are identical to
the input tree maps, except that a different set of trees are
designated as stumps. Thus, these two sets of maps can be
compared using several harvest indices: (1) the total number
of stems harvested across all the plots (ha−1, original: Ŷnm,
simulated: Ỹnm), and the total number by size class (origi-
nal: Ŷnm(size), simulated: Ỹnm(size)), (2) the total basal area of
stems harvested across all plots (ha−1, original: Ŷba, simulated:
Ŷba), and the total basal area harvested by size class (original:
Ŷ , simulated: Ỹ ), and (3) the proportion of stumps
ba(size) ba(size)

whose nearest neighbor is also a stump (original: P̂n, simu-
lated: P̃n). The first two groups of harvest indices compare the
yield of the original and the simulated harvest, while the third
examines the spatial pattern.
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.5. Simulating harvest in an individual-based
imulator

he empirical algorithm can also accept as input tree maps
hat are divided into grids, as is the case for SORTIE-ND
http://www.sortie-nd.org/index.html). In this case, the har-
esting of each grid cell is simulated using the same five steps
escribed above, except that the number of target trees to cut

n each grid cell (N̂t(grid)) is calculated from N̂t (total number
f clusters in entire calibration dataset) as follows. First, the
verage density of clusters N̂t/ha in the calibration dataset is
alculated by dividing N̂t by the total area (ha) of plots in the
alibration dataset. Second, the cluster density is multiplied by
he area of the entire tree map to calculate the total number of
arget trees to harvest in the simulation. Finally, the total num-
er of target trees to harvest is randomly distributed randomly
mong the grid cells such that the frequency distribution of

ˆ t(grid) is Poisson.

.6. Validation of the empirical algorithm

o validate the empirical algorithm, we ran simulated harvests
sing both the calibration and validation datasets as input tree
aps, and compared the simulated harvest patterns to the

riginal harvest patterns using harvest indices (as described in
ection 3.4). The simulated harvests were repeated 100 times
n each dataset and the harvest indices were calculated for
ach plot after each replication. The means and the standard
eviations of the simulated harvest indices were then calcu-

ated and compared to the observed harvest indices.

.7. Further details about the harvesting algorithm

rior to running the simulation and validating the model,
here were some additional concerns that needed to be
ddressed. In this section, we describe these concerns and
dditional analyses and adjustments we have made to the
lgorithm to address them.

.7.1. Reciprocal pairs
n almost any stand of trees there will be pairs of trees in which
oth trees are the other tree’s nearest neighbor. If the harvest-

ng algorithm is implemented in a stand where reciprocal tree
airs are abundant, the spatial pattern of stumps will be less
ggregated than was intended because contagious harvesting
annot spread beyond such a pair. In particular, the proportion
f stumps whose nearest neighbor is also a stump (simulated
alue, P̃n) will be less than the value of the input parameter

n (the probability of cutting the nearest neighbor of a tar-
et tree). To prevent this problem, we adjusted the probability
f cutting the nearest neighbor in a reciprocal pair (Pn(adj)) by

etting it equal to
√

Pn(Pn + 1)−1, as described in Appendix C.
his adjustment ensures P̃n approximates the input parame-

er value P̂n.
.7.2. Effects of plot boundaries on the value of P̂n

he value of P̂n, the proportion of stumps whose nearest
eighbor is also a stump, was calculated by searching for near-
st neighbors among all the stumps within each plot; those
1 ( 2 0 0 8 ) 251–266 255

outside of the plot boundary were ignored. Thus, we were
concerned the value of P̂n may have been different had we
included trees outside of the plot. To examine any bias that
may arise from this calculation method, we compared the val-
ues of P̂n before and after excluding stumps that may have its
nearest neighbor outside of the plot. We determined whether
or not a stump should be excluded by measuring the distance
to the nearest neighbor and by comparing it to the shortest dis-
tance to the plot boundary; if the distance to the boundary was
less than the distance to the nearest neighbor, the stump was
excluded from the calculations (note: these excluded stumps
were still used as neighbors of stumps that are included in the
calculations). This “edge-corrected” value of P̂n did not differ
substantially from the uncorrected value (as shown in Section
5.1), so we did not employ the edge-correction in any of our
other analyses.

4. The user-defined algorithm

4.1. Deriving parameter values from harvest targets

The user-defined version of the harvesting algorithm allows
one to modify the empirical harvesting regime by altering the
parameter values in the previous section. To modify the har-
vest regime, the user must specify the target amount to be
harvested in each diameter class, or the amount to be retained
in each diameter class. Furthermore, the user must choose to
specify these targets in terms of numbers of stems or basal
area. Here, we describe how the parameter values are derived
from these targets, assuming that the user has chosen to spec-
ify the number of stems to remove from each diameter class.
The diameter classes used for this purpose are the same as
those defined in Section 3.2, except that the large and extra-
large sawlogs were grouped together. The total number of
stems to be cut will be denoted as C, and the target numbers
for each size class will be referred to as C(pole), C(small), C(med),
and C(large).

Once the user defines the harvest targets, the algorithm
automatically calculates values for the input parameters
Pt(size) and Nt. We will refer to the parameter values calculated
from the harvest targets as P̄t(size) and N̄t. Note that the value
of Pn is independent of the harvest targets and can take any
value between 0 and 1; this user-defined parameter value will
be denoted as P̄n.

P̄t(size) is calculated by reading in a input tree map, counting
the number of trees in each size class, then dividing each C(size)

by the total number of trees found in each class. This provides
the proportion of trees that are to be cut in each diameter class.

The parameter Nt specifies the number of target trees to
cut (i.e., number of clusters to create) and should be set to
an appropriate value that will meet the harvest target, C. Fur-
thermore, the appropriate value of Nt will depend on the size
structure and spatial structure of the stand to be harvested.
Thus, to solve for Nt, we opted to take an iterative simulation
approach in which we repeatedly simulate the harvest of the

tree map using various values of Nt, then choose the value
of Nt that best satisfies the harvest target in the simulation
(see Appendix D for details, note: this iterative approach takes
approximately 3 min on a computer with Pentium M (1.5 GHz)

http://www.sortie-nd.org/index.html
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and 1 GB of memory). This procedure ensures that the total
number of trees harvested by the algorithm approximates the
value specified by the user.

4.2. Evaluation of the user-defined algorithm

Here, we evaluate the user-defined version of the algorithm
by addressing the following two questions: (1) does the user-
defined algorithm meet the harvest targets (C(size))? (2) Does
changing the value of Pn have the expected effect on the spa-
tial aggregation of stumps? To address these questions, we ran
two simulations using as input a tree map from an old-growth
stand in Haliburton, then compared simulated yields with the
harvest targets, and analyzed the degree of spatial aggrega-
tion of stumps in the two output tree maps using spatial point
pattern analysis.

The input dataset used in these two simulations has been
previously described in Caspersen and Saprunoff (2005) and
is not related to the calibration and validation datasets used
for the empirical algorithm. The size of the plot we used was
200 m × 200 m (4 ha; the original tree map was trimmed), and
we set the size of each grid cell at 40 m × 40 m. The basal area
in this plot was 29.1 m2 ha−1 and the number of stems was
515.8 ha−1. In both simulations, the harvest targets (C(size)) and
the probability of cutting a neighbor tree (P̄n) were set at the
same arbitrary values. However, the probability of harvesting a
nearest neighbor P̄n was 0.284 in the first simulation and 0.568
in the second simulation (note: 0.284 is the observed value
used in empirical harvesting algorithm). It was expected that
doubling P̄n would significantly increase the degree to which
stumps are aggregated.

To assess whether or not the user-defined algorithm can
meet the harvest targets, we compared the simulated harvest
yields (C̃(size)) to the harvest targets C(size). To assess whether
doubling the value of P̄n increased stump aggregation, we used
Ripley’s K function (Baddeley and Turner, 2005, Spatstat) to
characterize the spatial pattern of stumps in the two output
tree maps, and compared them to the pattern that would be
expected if trees were harvested at random. The random har-
vesting patterns were created by taking the two output tree
maps and randomly reassigning the status of trees while pre-
serving the total number of stumps (this was done separately
for each size class) to create randomized tree maps. This ran-
domization was repeated 999 times, and the K function was
calculated after each iteration. Using the results from this
repeated randomization process we determined the critical
values of K that would be expected under the random harvest
pattern (˛ = 0.01). If the algorithm-generated K function lied
outside these critical values, the spatial pattern of stumps was
considered to be statistically different from a random distri-
bution.

4.3. Comparing light regimes under different harvest
regimes

The user-defined algorithm allows the user to increase the

value of Pn to simulate group selection, a practice that is
designed to create larger gaps with higher light levels. To
determine whether increasing P̄n has the expected effect on
understory light regimes, we imported five of the tree maps
2 1 1 ( 2 0 0 8 ) 251–266

described in Section 4.2 (the input map, the two output maps,
and two randomized maps) into SORTIE, and used the GLI
Map Creator to calculate an understory light level for every
1 m × 1 m grid. We then compared the frequency distribu-
tion of light in each tree map to assess whether aggregation
increased understory light levels.

5. Results

5.1. Calibration of the empirical harvesting algorithm

The observed proportion of stumps in each size class
increased substantially with tree size (P̂t(pole) = 0.04, P̂t(small) =
0.18, P̂t(med) = 0.37, P̂t(large) = 0.48, P̂t(x-large) = 0.62), as did the
proportion of basal area cut (Fig. 1). This reflects the pref-
erential harvesting of the larger trees, and is to be expected
under selection silviculture. We also examined the proportion
of stems cut in each plot and found that harvesting intensity
varied substantially from one plot to the next (Fig. 2). The aver-
age fraction of stems harvested per plot was 0.17 ± 0.08 (S.D.),
whereas the average fraction of basal area harvested per plot
was 0.31 ± 0.12 (S.D.).

The number of clusters in a plot varied considerably, as well
as the size of each cluster (Fig. 3). Approximately 80% of the
clusters found in the Haliburton dataset were singletons (clus-
ter size = 1), and most of the remaining clusters were paired
(cluster size = 2) (Fig. 3a). We found no significant correlation
between the number of clusters per plot and the average size
of clusters within a plot (p = 0.365).

The proportion of stumps observed to have a stump as the
nearest neighbor (P̂n) was 0.284. When the edge-correction
was applied (Section 3.7.2), the value of P̂n was only marginally
lower, 0.276, which suggests that edge correction is not nec-
essary here. Thus, all the values of P̂n and P̃n reported
in the following sections were calculated without edge
correction.

The proportion expected at random (P̂n(rand)) was 0.159,
although there was significant variation around this value
(Fig. 4). The chances of obtaining a value equal to the observed
through random harvesting are extremely small (Fig. 4). Thus
we conclude that trees are harvested in a non-random and
aggregated manner at Haliburton, and speculate that this is
the case with selection silviculture in general.

5.2. Validation of the empirical algorithm

The total simulated yields closely matched the observed yields
in both the calibration and the validation datasets (Table 1).
The distribution of simulated yield across the diameter classes
was also consistent with the observed yields (Fig. 5). The P̃n

values were also consistent with the empirical values, which
implies that the algorithm was able to reproduce the spa-
tial distribution pattern of stumps as captured by the nearest
neighbor method (Table 1). However, for the validation dataset,
there were some discrepancies between the empirical value P̂
n

and the simulated value P̃n (Table 1). This may be attributed
to the smaller sample size of the validation data set (27 plots),
which may have caused the proportion in the validation data
(P̂n = 0.219) to deviate from the proportion in the original 84
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Fig. 1 – (a) The number of stems (includes both live trees
and stumps) and (b) the basal area of stems by diameter
size class, observed in the 84 plots used for calibration. The
shaded area within the bar graph represents the stumps,
while the line with dots indicates the proportional value of
stumps (P̂n) in each size class. The total number of live
trees in the 84 plots was 3426 (average per plot = 40.8 ± 11.5
(S.D.)), while that of stumps was 657 (average per
plot = 7.8 ± 3.6). Total basal area of live trees was
2 2 −1
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Fig. 2 – Frequency distribution of the proportion, cut
0.3 m ha , and the total basal area of stumps was
.1 m2 ha−1.

lots (P̂n = 0.284). Nevertheless, the value of P̂n in the valida-
ion dataset is still within two standard deviations from the

ean value of P̃n (0.292 ± 0.044). Moreover, the algorithm was
uite successful in reproducing the value of the input param-
ter Pn, which was set at 0.284.

.3. Evaluation of the user-defined algorithm

verall, the harvesting algorithm was successful in meet-

ng the harvest targets (Table 2). The spatial point pattern
nalysis of harvested trees using K function showed that the
attern of stumps created by the harvesting algorithm was
ignificantly more clustered than what would be expected
calculated based on (a) the number of stems per plot and (b)
the basal area per plot.

in random harvesting (Fig. 6). Spatial clustering is signifi-
cant for distances from 1 to 11 m when the value of P̄n is
set at 0.284, and when this value is set at 0.568, the cluster-
ing is significant for distances from 1 to 22 m. Thus larger
clusters were created in the algorithm by increasing the
value of P̄n, as designed. When P̄n is set at 0.284, the aver-
age cluster size was 1.46 stumps/cluster, and when P̄n is set
at 0.568, the value increased to 1.70 stumps/cluster (note:
average cluster size for a random harvest is 1.20 stumps/
cluster).

5.4. Comparing light regimes under different harvest

regimes

Comparing the distribution of predicted light levels revealed
that aggregated harvesting resulted in a more skewed dis-
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Fig. 3 – (a) Frequency distribution of cluster size found in
the Haliburton data set (number of plots = 84, total number
of clusters = 549). (b) Frequency distribution of number of

Fig. 4 – The frequency distribution of P̂n(rand), the probability
of stump’s nearest neighbor being a stump, based on
random harvesting (stumps are randomly placed within
clusters per plot.

tribution than random harvesting (Fig. 7). In particular, the
distribution under aggregated harvesting had a longer “tail”
(Fig. 7), and this tail was more conspicuous when the value
of P̄n was set at a higher value (Fig. 7b). When P̄n = 0.284,
the total area of the grids cells that had GLI values greater
than 30 (a value above 30 was not found prior to harvest)
was 2132 m2 (5.3% of the total area); the value based on ran-
dom harvesting was 863 m2 (2.2% of the total area). When
P̄n = 0.568, the total area with GLI values greater than 30 was
3013 m2 (7.5% of the total area), while the values based on ran-

dom harvest was 1217 m2 (3% of the total area). These results
show that the area under high light (GLI > 30) was more than
two times greater under aggregated harvesting than random
harvesting.
the plots). The empirical value P̂n at Haliburton was 0.284,
significantly higher than the mean value of P̂n(rand) (0.159).

6. Discussion

Gaps created by harvesting can vary in size, shape, and
orientation, and as a consequence, gaps give rise to sig-
nificant spatial heterogeneity within managed forests. This
heterogeneity is thought to play an important role in driv-
ing the successional dynamics (Seymour and Hunter, 1999)
and in maintaining both species diversity (Thomas et al.,
1999; Loehle, 2000) and forest productivity (Botkin et al., 1972;
DeAngelis and Gross, 1992; Pacala and Deutschman, 1995;
Webster and Lorimer., 2002). Although high-resolution mod-
els may not be required to simulate gap-phase recruitment
in single-tree gaps (see Deutschman et al., 1999), it is clear
that the ability to resolve individual gaps is advantageous for
simulating processes that depend on gap size, such as the
process of gap partitioning (Busing and Mailly, 2004; Busing
and White, 1997). The harvesting algorithm we have devel-
oped here is capable of creating gaps that range from single- to
multiple-tree gaps in a manner very similar to that observed in
stands managed under selection system silviculture. It is thus
well suited for examining regeneration processes in selection-
managed forests that depend on gap size within the context
of spatially explicit, individual-based simulation models.

The ability to specify the gap size distribution is also essen-
tial for simulating selection silviculture because it emulates
a primary parameter that managers manipulate to promote
the regeneration of different species. At the same time, the
ability to set harvest targets is important because managers
must balance the need to regenerate desired species with the

need to maintain timber supply. In order to simulate harvest-
ing practices under selection silviculture, we must be able
to represent variability in gap sizes, while conforming to the
harvest targets. The harvesting algorithm we have developed
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Table 1 – Comparison of the empirical and the simulated patterns of harvest for the calibration and the validation
datasets

Basal area of
stumps(m2 ha−1)

Number of stumps (ha−1) Proportion of stumps
whose nearest neighbor is

also a stump

Haliburton (Yba) Simulated (Ỹba) Haliburton (Ynm) Simulated (Ỹnm) Haliburton (Pn) Simulated (P̃n)

Mean S.D. Mean S.D. Mean S.D.

Calibration 9.13 9.31 0.11 62.22 62.72 0.89 0.284 0.305 0.024
Validation 7.12 7.19 0.22 51.86 52.86 1.71 0.219 0.290 0.044

The values for simulated harvesting are averages of 100 replicate simulations. S.D. represents one standard deviation. In all simulated harvests,
the same parameter values derived from the 84 calibration plots were used. The Pn value was set at 0.284, and the probability of cutting down
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the target tree (Pt) for each size class was defined as follows: Pt(pole) =
of target stumps to cut to in each plot (Nt(plot)) was obtained empiric
Appendix D).

an achieve both of these tasks simultaneously, and thus is
apable of creating various harvesting scenarios under the
election system. Once our algorithm is incorporated into an
ndividual-based forest stand simulator, it will be possible
o study long-term forest stand development and dynamics
nder various harvesting scenarios. Such studies may yield
ew insights into the dynamics of managed stands and pro-
ide guidance in designing new management regimes.

.1. Empirical algorithm

ur empirical algorithm was successful in reproducing the
arvesting patterns found in Haliburton Forest, and is one
f the very few harvesting algorithms that have been tested
gainst field data. It is important to note, however, that we
ave only compared observed and simulated patterns at a
ery coarse scale by averaging across all the plots. If empir-
cal and simulated harvests were compared at the plot level,
here would likely to be substantial differences between the
wo. Such plot-level differences are expected to arise due to
he stochasticity of the harvesting algorithm and because the

bserved patterns of harvest will vary from one plot to the
ext.

Harvest targets in forest management are always set at the
tand scale (i.e., cut-blocks), but at the plot level there is no

Table 2 – Comparison of the target (C(size)) and the simulated (C̃(

(a) Total number of harvested trees (ha−1) C

By size class
Polewood C(pole)

Small sawlog C(small)

Medium sawlog C(med)

Large sawlog C(large)

(b) Total basal area of harvested trees (m2 ha−1)

The target harvest values were arbitrarily determined. The total target bas
stumps in each diameter class, which is calculated by multiplying the num
per tree for the respective size class.
Pt(small) = 0.18, Pt(med) = 0.37, Pt(large) = 0.48, Pt(x-large) = 0.62. The number
y analyzing the number of clusters in each plot (see Section 3.2 and

single standard management regime; the harvesting patterns
at this scale are mostly determined by the knowledge and
the experience of foresters and loggers. Consequently, at this
scale, there is bound to be considerable local variation in the
patterns of harvest, even if the overall harvest targets were set
identically, and even if the same stand were harvested. This
local variation in harvesting pattern itself may lead to substan-
tially different stand development and dynamics following a
harvest (Pacala and Deutschman, 1995). This potential vari-
ation in local harvesting patterns can be captured with our
harvesting algorithm by running it repeatedly onto the same
stand. If this repeated process is done within a forest simula-
tor, we may also be able to capture the resulting variability in
subsequent forest development. Our knowledge of potential
variability in the state of the forest years after implementing
a particular harvesting regime may have significant implica-
tions for forest management and conservation planning.

6.2. The proportion of stumps in the larger
neighborhood
Our empirical harvesting algorithm was successful in repro-
ducing the spatial distribution patterns of stumps as captured
by nearest neighbor statistics. Yet, it must be noted that
by considering only the nearest neighbor, we may fail to

size)) yield for the user-defined algorithm

Target Simulated

P̄n = 0.28 P̄n = 0.56

108 C̃ 115 120

34 C̃(pole) 43 49
33 C̃(small) 33 30
29 C̃(med) 26 28
13 C̃(large) 14 13

10.8 10.8 10.8

al area of stumps was obtained by summing the target basal area of
ber of trees to harvest in each class (C(size)) by the average basal area
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Fig. 5 – Comparison of empirical (Ŷnm(size), Ŷba(size)) and
simulated (Ỹnm(size), Ỹba(size)) yield by size class (results for
the validation dataset): (a) number of trees and (b) basal
area harvested by diameter class. Open circles show the
empirical values, while the closed circles are average

values from the simulated harvest (100 replicated runs).
Error bars indicate one standard deviation.

reproduce the full spatial distribution pattern of stumps.
For example, the algorithm may reproduce the proportion of
stumps whose nearest neighbor is also a stump (P̂n), but may
fail to reproduce the proportion of stumps within the four
nearest neighbors. Such a discrepancy is expected if the spa-
tial distribution of clusters are different from those found in
the empirical data. For example, if the clusters are aggregated,

the proportion of stumps in the larger neighborhood might be
higher than what would be expected if the clusters were dis-
tributed randomly in space. However, we have found that our
nearest neighbor algorithm was in fact capable of capturing
2 1 1 ( 2 0 0 8 ) 251–266

the spatial pattern of harvesting in the larger neighborhood
(Supplementary Material). The success of our harvesting algo-
rithm in reproducing the spatial pattern of stumps in the larger
neighborhood may be due to the fact that clusters are being
formed centered on the larger sized trees (i.e., preferential har-
vest of larger stems as target trees). The spatial distribution
of large stems in a stand will largely dictate the spatial dis-
tribution of clusters, and because these large stems are less
abundant in the stand, there may be limited variability in the
spatial distribution pattern of clusters.

In the actual practice of selection silviculture, larger trees
are also preferentially harvested, and multi-stump gaps are
most likely to be created around these individuals. Thus the
similarity in the way the trees are selected for harvest in the
field and in the algorithm, may have allowed the algorithm to
better capture the spatial pattern of harvesting in the larger
neighborhood.

6.3. User-defined algorithm

In the user-defined algorithm, there are only two sets of
parameters that need to be defined prior to running the har-
vesting algorithm: harvest target by size class (C(size)) and the
probability of cutting the nearest neighbor (Pn). The former
allows the user to modify the intensity and the size-specificity
of harvesting, while the latter enables modifications to the
spatial distribution of harvesting within the framework of
selection silviculture (i.e., single-tree selection and group
selection). Both of these input variables are intuitively easy
to understand, and therefore should aid in allowing the user
to create various harvesting scenarios for use in an individual-
based forest simulation model.

Overall, the user-defined algorithm was successful in meet-
ing the target harvest yields, but there were slight differences
between the target and the simulated yield in the polewood
diameter class (Table 2). This discrepancy between the tar-
get and the simulated values is likely to increase as the value
of P̄n (user-defined input value) or the average cluster size is
increased. This pattern is expected for the following reasons:
in the harvesting algorithm, the user-defined harvest targets
are matched through the selective cut of target trees, but the
algorithm has no control over which diameter size trees are
harvested during the propagation process of stumps. Thus as
the average cluster size is increased, it inevitably results in
more trees being harvested without any consideration to its
size. Given that the smallest size class (polewood trees) is also
the most abundant (Fig. 1), stems belonging to this size class
will be most affected by the propagation process, resulting in
the largest discrepancy between the target and the simulated
yields. However, this difference between the target and the
simulated yield in the polewoods is expected to have relatively
minor effects on the overall effectiveness of the algorithm for
two reasons: (1) due to their size, polewoods have very lit-
tle influence on the total basal area harvested, (2) polewoods
are the most abundant size class within a stand, therefore
when the harvested yields are viewed in terms of the pro-

portional values, the target and the simulated values do not
differ substantially. The harvest target for polewoods (C(pole))
can be expressed proportionally as 0.08 (Table 2), given that
the total number of polewoods in the tree map was 1364. Sim-
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Fig. 6 – The spatial point pattern analysis (Ripley’s K function) of the harvested trees based on the user-defined harvesting
algorithm (closed circles). (a) P̄n = 0.284 and (b) P̄n = 0.568. The K function was transformed to L(t) − t, where L(t) = [K(t)�]1/2,
and t is distance (Ripley, 1979); [L(t) − t] = 0 indicates complete spatial randomness (Poisson process), [L(t) − t] < 0 spatial
regularity and [L(t) − t] > 0 spatial clustering. The dotted lines represent 0.005 and 0.995 quantiles of L(t) − t estimated from
999 simulations of random harvests (˛ = 0.01). The calculated [L(t) − t] values are significantly different from 0, if they lie
o

u
p
r
s

6
w

P
o
D
r
a
a
s
a
t
i
T
o
a
i
a
a
a
a
a
d
m
g
i
a
t
c
l
l
d
b

utside of these bounds.

lated yields of polewoods (C̃(pole), Table 2) can be expressed
roportionally as 0.085 and 0.089, for P̄n = 0.284 and 0.568,
espectively. Thus, in terms of percentages, the target and
imulated yields differ by less than 1%.

.4. Comparison with existing harvesting algorithms
ithin SORTIE and other simulators

revious studies have examined the effect of various gap sizes
n forest stand dynamics using SORTIE (Coates et al., 2003;
eutschman et al., 1997; Ménard et al., 2002). Within the recent

elease of SORTIE-ND (version 6.05), there are two existing
lgorithms that can potentially be used to harvest trees in
simulated stand. The first is an algorithm that mimics a

ingle-tree selection. This function does not allow for cre-
tion of multi-tree gaps other than by chance (i.e., Bernoulli
rial selection of harvested stems); this limits its usefulness in
mplementing the diverse scenarios of selection silviculture.
he second SORTIE-ND algorithm is more flexible in terms
f creating gaps of various sizes (or harvesting trees in an
ggregated manner), but requires extensive and detailed user
nput. In this function, a simulated stand is split into grids,
nd the user defines which grids should be harvested through
visual interface. Because the size of each grid can be set at

ny value, gaps of any size, form and orientation can be cre-
ted. This would allow representation of a single-tree selection
nd group-selection in a simulated stand. However, a major
rawback of this algorithm is the fact that the user has to
anually define each gap with the visual interface, which

reatly limits its usefulness for large-scale simulation stud-
es. Moreover, attempting to meet the harvest targets is not
n easy task with this function, as the user will not know
he amount of trees (BA and number of trees) that will be
ut by selecting a specific grid. Our algorithm, as stated ear-

ier, is able to meet the harvest targets as well as change the
evel of aggregation of stumps using a small number of user-
esignated parameters. Once incorporated into SORTIE, it will
e possible to automate the entire harvesting process, which
is an essential feature if one wishes to run many replicated
simulations.

Selection harvesting has been implemented within various
forest simulators other than SORTIE. For example, in many
forest growth models such as FIBER (Solomon et al., 1995),
there are built-in functions that allow simulation of harvesting
regimes that may differ in the intensity of harvesting and the
size-specificity of harvesting. However, because these models
are not spatially explicit, they are not capable of representing
variability in gaps sizes (i.e., spatial patterns of harvest). Mod-
els such as LSM (McCarter et al., 1998) and LANDIS (Mladenoff
and He, 1999; He et al., 2005) are spatially explicit forest sim-
ulators capable of representing various types of disturbances,
including harvesting based on selection systems. Both of these
models can create various spatial and structural patterns of
harvest. However, LMS and LANDIS are stand- and landscape-
level models, both of which do not address the detailed spatial
dynamics of forest structure within stands. Thus, while the
harvesting algorithms within these models are capable of cre-
ating spatial patterns of harvest at stand-level resolution, they
do not create detailed harvesting pattern of stumps within a
stand. Söderbergh and Ledermann (2003) reviewed harvesting
algorithms that were implemented in five other individual-
based forest simulation models (SILVA, MOSES, PROGNAUS,
STAND, BWINPro); these algorithms are capable of harvest-
ing trees from a simulated stand in various spatial patterns.
However, they do not consider the targets for residual stand
structure simultaneously, and this is exactly what we have
attempted to do in our algorithm so that we can recreate the
harvesting patterns of selection silviculture.

6.5. Improvements and extensions to the algorithm

We have described here the basic structure of the harvesting

algorithm, which could be profitably modified and extended in
a number of directions. For example, the algorithm described
here does not take species into consideration, but in many
instances a user may wish to harvest only one or a few species
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Fig. 7 – Frequency distribution of light levels produced by
harvesting regimes that differ in the degree of aggregation:
(a) P̄n = 0.284 and (b) P̄n = 0.568. The index of light levels
used is the gap light index (GLI), which specifies the
percentage of incident, growing season photosynthetic
photon flux density (PPFD) that penetrates through the
canopy (Canham, 1988). Open circles represent values for
random harvesting and the closed inverted triangle
represents the harvesting done with the empirical version

t(plot) t
of the algorithm. As a reference, the distribution of the
pre-harvest conditions is given as closed circles.

from a stand. Allowing for such species-specific harvesting is
not difficult to implement, since simply setting a new criterion
for selecting a target tree can achieve this task. However, the

neighboring individuals that are cut due to spatial propagation
will not be species-specific (as they were not size-specific), and
species other than sugar maple will inevitably be harvested.
However, this is also to be expected in the field when a forester
2 1 1 ( 2 0 0 8 ) 251–266

attempts to create multi-tree gaps, despite targeting a single
species. Thus by modifying the algorithm so that it draws tar-
get trees only from a pool of single (or a few) species allows a
cut that is primarily composed of the targeted species.

With minor modification, our harvesting algorithm is also
capable of representing other types of harvesting regimes. For
example, we may wish to simulate structural retention har-
vesting where trees or patches of forest are left behind to
provide structural diversity and habitat for many organisms
(e.g., Franklin et al., 1997; Beese and Bryant, 1999; Bebber et
al., 2005). The simplest approach with our algorithm would be
to designate as residual trees those stems treated as stumps in
the current study, thus leaving behind clusters of trees of var-
ious sizes after the harvest. Diameter-limit cutting (Nyland,
1992, 2000) could also be implemented by drawing target trees
only from a pool of trees within a certain diameter class.

The algorithm could also be made more flexible in terms of
the variability in the harvesting intensity among the grid cells.
In the user-defined algorithm, the harvesting intensity within
a grid cell is primarily dictated by the number of target trees
harvested per grid (N̄t(grid)); in the version of the algorithm we
have presented here, the theoretical frequency distribution of
N̄t(grid) was a Poisson distribution. However, one may change

the harvesting intensity by changing the frequency distribu-
tion function, or preventing harvesting in certain grid cells
(i.e., N̄t(grid) = 0). Thus, by making such modifications, the algo-
rithm we have presented here can be much more flexible in
terms of its implementation, reflecting the wide variability in
harvesting practices now common in forestry.

Acknowledgments

This work was supported by the Sustainable Forest Manage-
ment Network, a Canadian Network Center of Excellence, and
by the National Science and Engineering Research Council of
Canada. We thank Grant Domke, Sheelah Griffith, Rachel May-
berry, Justin Morgenroth, and Charles Nock for assistance with
tree mapping, and Peter Schleifenbaum for access and logis-
tical support at Haliburton Forest.

Appendix A. List of symbols

Input parameters for the nearest neighbor algorithm
Nt number of target trees to cut down
Pn probability of cutting down a neighbor tree
Pt probability of cutting down a target tree

Empricial algorithm: symbols used to denote parameter values cal-
culated from field data
N̂t value of Nt calculated from field data
N̂t(grid) value of Nt calculated from field data (used with tree

maps that are divided into grids—Section 3.5)
N̂ value of N calculated from field data (used with plot-
based tree maps—Section 3.4)
P̂n value of Pn calculated from field data
P̂t value of Pt calculated from field data
Ŷba observed total basal area harvested
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ˆ ba(size) observed basal area harvested by size class
ˆ nm observed total number of stems harvested
ˆ nm(size) observed number of stems harvested by size class

ymbols used to denote variables calculated from simulation output
˜ n value of Pn calculated from simulated data
˜ ba simulated total basal area harvested
˜ nm simulated total number of stems harvested
˜ ba(size) simulated basal area harvested by size class
˜ nm(size) simulated number of stems harvested by size class

ser-defined algorithm
¯ t value of Nt calculated from the user-defined harvest

targets
¯ n value of Pn defined by the user
¯ t value of Pt calculated from the user-defined harvest

targets

target yield (total number of stems)

(size) target yield by size class (total number of stems)
˜ simulated yield (total number of stems)
˜ (size) simulated yield by size class (total number of stems)

ppendix B. Calculating the average number of
lusters in a plot (N̂t)

ere, we borrow some terminology from graph theory to
xplain how the number of clusters in the field data (i.e.,
he value of N̂t) were identified and counted. In this explana-
ion, a plot will be represented by a directed graph, where all
rees within the plots are considered as vertices. Arcs (directed
dges) that connect the vertices are created by repeating the
ollowing procedure for each vertex that is a stump: (1) deter-
ine the nearest neighbor, and (2) if the nearest neighbor is a
tump, connect the two vertices (stumps) by an arc. The near-
st neighbor is the head of an arc, and the target stump is the
ail (example: in Fig. B1, stump 1 is the tail, and stump 2 is

ig. B1 – An illustration to explain how the clusters were identifi
ircles live trees. See text for details.
1 ( 2 0 0 8 ) 251–266 263

the head of an arc). Note that there are special cases where a
stump can be both the tail and the head of an arc between its
nearest neighbor (Fig. B1, stumps 3 and 4). Once all the arcs
are identified, the plot is represented by a directed graph, and
the identification of clusters is equivalent to identifying path-
connected components (sub-graph) within this graph. In the
example in Fig. B1, six clusters are identified. A cluster can
be of various sizes (Fig. B1), where a single vertex is also con-
sidered a cluster (i.e., “singleton”, cluster 2 in Fig. B1). In this
method of cluster identification, a vertex can belong to mul-
tiple clusters as found in the case for stump 6 in Fig. B1; this
stump can belong to a cluster originating from stump 5, or a
different cluster originating from stump 7. Note that clusters
4 and 5 cannot be considered as a single cluster, as there is no
path from stump 5 to stump 7, or vice versa.

Appendix C. Reciprocal pairs

The presence of reciprocal tree pairs (pairs in which both trees
are each other’s nearest neighbor) presents a problem when
implementing a nearest neighbor algorithm. To better under-
stand this problem, consider the behaviour of the algorithm
when it selects one of the trees in a reciprocal pair as a tar-
get tree, then cuts both the target tree and second tree in the
pair (with probability PtPn). At this point, the contagious pro-
cess cannot spread any further because both trees are each
other’s nearest neighbor. Thus, fewer neighboring trees will
be cut than would be expected if there were no reciprocal tree
pairs in a stand, and the spatial pattern of stumps will be less
aggregated than was intended. In particular, the proportion of
stumps whose nearest neighbor is also a stump (P̃n) will be
less than the value of the input parameter P (the probability
n

of cutting the nearest neighbor of a target tree). To ensure that
P̃n approximates the input parameter value Pn, we adjusted
the probability of cutting the nearest neighbor in a reciprocal
pair as follows.

ed in a plot. Open circles represents stumps and closed
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sting
tails.
Fig. C1 – An illustration of three possible outcomes of harve
as a target tree and designates it as a stump. See text for de

There are three possible outcomes (Fig. C1) when the algo-
rithm first selects and cuts a target tree from a reciprocal pair:
(1) the algorithm does not cut the neighboring tree if a random
number is greater than, or equal to, Pn, (2) the algorithm cuts
the neighboring tree if the random number is less than Pn, and
recuts the target tree if a second random number is less than
Pn, (3) the algorithm cuts the neighboring tree if the random
number is less than Pn, and resurrects the target tree if the
second random number is greater than, or equal to, Pn The
probabilities of these three outcomes are (1 − Pn), P2

n, and Pn

(1 − Pn), respectively. Thus, the probability of a stump’s near-
est neighbor being a stump, given that it belongs to a reciprocal
pair is

P̃n = 2m(Pn)2

m(1 − Pn) + 2m(Pn)2 + m(Pn)(1 − Pn)

= 2Pn
2

Pn
2 + 1

, (0 ≤ Pn ≤ 1) (C.1)

where, m is the number of target trees selected from reciprocal
pairs, 2m(Pn)2 is the number of stumps that have a stump as
its nearest neighbor, and [m(1 − Pn) + mP2

n + mPn(1 − Pn)] is the
total number of stumps.

To ensure that P̃n approximates the input parameter value
Pn, the algorithm calculates an adjusted probability of cutting
the nearest neighbors in reciprocal pairs as follows. First, the
adjusted probability (Pn(adj)) is substituted for Pn in Eq. (C.1):
P̃n =
2P2

n(adj)

P2
n(adj) + 1

, (0 ≤ Pn(adj) ≤ 1) (C.2)
, when the algorithm draws one of the reciprocal tree pairs

then Pn is substituted for P̃n in Eqs. (C.2) and (C.2) is rearranged
to obtain:

Pn(adj) =
√

Pn

Pn + 1
(C.3)

In addition to adjusting Pn, we also allowed the algorithm
to switch the status of the reciprocal tree pairs when the target
tree is resurrected (i.e., target is assigned a stump status, while
the neighbor becomes a live tree) to ensure that simulated
basal area yield (Ŷba) approximates the observed yield (Ỹba).
This was deemed necessary because the neighbor trees are
cut down without any consideration of their size, while target
trees are selected based on their size to meet the target basal
area of harvest. This modification does not affect P̃n, but it
allows the algorithm to better reproduce the observed yield.

Appendix D. Determining the number of target
trees to cut (N̄t) in the user-defined version of
the algorithm

In the empirical version of the model, the number of tar-
get trees to cut was determined by examining the number of
clusters found in each plot (Appendix B). In the user-defined
version of the model, however, we have no direct means to
determine how many target should be cut in order to attain
the user-defined target number (prescription) of trees to har-
vest. The number of target trees that should be cut would
depend on the user-defined values of the prescription and P̄n.
To determine the number of target trees to cut, we have used

an iterative approach to solve for N̄t, where we run a number
of preliminary harvesting simulations by systematically vary-
ing the number of target trees that are cut. By doing so, we
can choose the number of target trees to cut (N̄t) that would



e c o l o g i c a l m o d e l l i n g 2 1

Fig. D1 – An example showing the relationship between
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he number of target stumps cut and the total number of
tems harvested in the algorithm. See text for details.

e necessary to match the user-defined target number of trees
o harvest.

In Fig. D1, we illustrate an example of this procedure. In
his example, the target number of trees to be harvested over
he entire plot was set at 108 trees per hectare by the user (the
orizontal line in the illustration below). The x-axis represents

he numbers of target trees that were cut in the simulation,
nd y-axis represents the total number of trees harvested by
he algorithm. In this example, four replicate simulation runs
ere done for each level of the systematically varied x-value.
hen all data points are obtained (closed circle), a polynomial

urve fitting is used to get a regression line through the data
oints (dashed line). The value of x for the point at which the
orizontal line (target value) and the regression line intersect

s determined as the number of target stumps (N̄t) necessary
o attain the target harvest value (arrow) (note: while a simple
inear regression may be used instead of a polynomial curve
tting in this example, the relationship is not necessarily lin-
ar).

Once the total number of target trees to be cut is deter-
ined (N̄t), they are distributed among the grid cells. For the

urrent version of the model, we distributed (N̄t) randomly
nto the grid cells; the frequency distribution of the number
f target stumps per grid cell will theoretically be a Poisson
istribution.

ppendix E. Supplementary data

upplementary data associated with this article can be found,
n the online version, at doi:10.1016/j.ecolmodel.2007.09.007.
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