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Abstract. Advances in computing power in the past 20 years have led to a proliferation
of spatially explicit, individual-based models of population and ecosystem dynamics. In
forest ecosystems, the individual-based models encapsulate an emerging theory of ‘‘neigh-
borhood’’ dynamics, in which fine-scale spatial interactions regulate the demography of
component tree species. The spatial distribution of component species, in turn, regulates
spatial variation in a whole host of community and ecosystem properties, with subsequent
feedbacks on component species. The development of these models has been facilitated by
development of new methods of analysis of field data, in which critical demographic rates
and ecosystem processes are analyzed in terms of the spatial distributions of neighboring
trees and physical environmental factors. The analyses are based on likelihood methods
and information theory, and they allow a tight linkage between the models and explicit
parameterization of the models from field data. Maximum likelihood methods have a long
history of use for point and interval estimation in statistics. In contrast, likelihood principles
have only more gradually emerged in ecology as the foundation for an alternative to tra-
ditional hypothesis testing. The alternative framework stresses the process of identifying
and selecting among competing models, or in the simplest case, among competing point
estimates of a parameter of a model. There are four general steps involved in a likelihood
analysis: (1) model specification, (2) parameter estimation using maximum likelihood meth-
ods, (3) model comparison, and (4) model evaluation. Our goal in this paper is to review
recent developments in the use of likelihood methods and modeling for the analysis of
neighborhood processes in forest ecosystems. We will focus on a single class of processes,
seed dispersal and seedling dispersion, because recent papers provide compelling evidence
of the potential power of the approach, and illustrate some of the statistical challenges in
applying the methods.
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INTRODUCTION

Advances in computing power in the past 20 years
have led to a proliferation of spatially explicit, indi-
vidual-based models of population and ecosystem dy-
namics (DeAngelis and Gross 1992, Judson 1994, Dun-
ning et al. 1995, Mooij and DeAngelis 1999a). Spa-
tially explicit models of forest dynamics such as ZELIG
(Urban et al. 1989) and SORTIE (Pacala et al. 1996)
shift the focus from the dynamics of discrete patches
or gaps (sensu Watt 1947, Levin and Paine 1974) to
interactions among individual organisms, and allow a
more detailed treatment of environmental heteroge-
neity at a variety of spatial scales. While these models
have shifted focus away from the visualization of for-
ests as mosaics of discrete gaps, there has yet been no
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clear, corresponding statement of a theoretical alter-
native to traditional gap-phase dynamics (but see
Dieckman et al. 2000 for a review of recent attempts).
By tracking birth, death and recruitment for each in-
dividual, spatially explicit, individual-based models
have the potential to provide insights into the ecolog-
ical and evolutionary processes that determine the
structure and composition of plant communities. In ef-
fect, the individual-based models encapsulate an
emerging theory of ‘‘neighborhood’’ dynamics, in
which fine-scale spatial interactions regulate the de-
mography of component tree species (Pacala et al.
1996, Law and Dieckmann 2000). The spatial distri-
bution of component species, in turn, regulates spatial
variation in a whole host of community and ecosystem
properties, with feedbacks on component species.

Studies of neighborhood dynamics appear to be a
particularly powerful vehicle for the integration of pop-
ulation dynamics and ecosystem processes. Attempts
to ‘‘link species and ecosystems’’ have been a perva-
sive theme in ecology in the past decade (Jones and



February 2006 63CONTEMPORARY STATISTICS AND ECOLOGY

Lawton 1994, Loreau 2000). Canopy tree species exert
strong control over many aspects of forest ecosystem
processes, which, in turn, have feedbacks that influence
canopy tree dynamics (Canham and Pacala 1994, Rothe
and Binkley 2001). Studies of forest ecosystem pro-
cesses have traditionally used plot designs that average
across variation in local neighborhood composition and
structure. It is very difficult using this approach, how-
ever, to predict changes in ecosystem processes as can-
opy composition changes. This is particularly true
when the spatial interactions of different species are
nonadditive, and the properties of a plot cannot be pre-
dicted from simple data on the relative abundance of
species within the plot. The emerging theory of neigh-
borhood dynamics provides an alternative approach
that incorporates the mechanistic, spatially explicit in-
teractions between species dynamics and ecosystem
processes, including heterogeneity in the physical en-
vironment. Spatially explicit models then provide the
tool for synthesizing these processes into spatial and
temporal predictions of system dynamics (Gratzer et
al. 2004).

The shift to spatially explicit, individual-based mod-
els has been facilitated by development of new methods
of analysis of field data (i.e., Ribbens et al. 1994, Kobe
et al. 1995, Canham et al. 2001), in which measure-
ments of environmental factors (e.g., light) and critical
demographic rates (e.g., recruitment) and ecosystem
processes (e.g., nitrogen mineralization) are analyzed
in terms of the spatial distributions of neighboring trees
and physical environmental factors. The analyses are
based on likelihood methods and information theory
(Edwards 1992, Eliason 1993, Hilborn and Mangel
1997, Burnham and Anderson 2002, Hobbs and Hil-
born 2006), and allow a tight linkage between the mod-
els and explicit parameterization of the models from
field data. They also allow quantification of uncertainty
in both parameter values and model predictions (Pacala
et al. 1996, Mooij and DeAngelis 1999b).

Likelihood methods have been widely used in other
disciplines for many years, but have only recently
gained a foothold in ecological research (Hobbs and
Hilborn 2006). Hilborn and Mangel (1997) provided
one of the first general primers on the approach written
specifically for ecologists. Burnham and Anderson
(2002) provide a more formal treatment of the methods
and put them in the broader context of information
theory. At the heart of the methods is the explicit in-
terplay between data and models, with ‘‘model’’ used
in the sense of a mathematical statement of the quan-
titative relationships that are assumed to have generated
the observed data. Classical hypothesis testing is re-
placed by the more general process of model selection
and comparison, using likelihood and parsimony to
compare the strength of evidence for competing mod-
els. Likelihood methods provide analogues for many
traditional parametric statistical tests, but often without

many of the restrictive assumptions required for para-
metric statistics.

Our goal in this paper is to review recent develop-
ments in the use of likelihood methods and modeling
for the analysis of neighborhood processes in forest
ecosystems. We will not try to review the wide range
of issues that can be addressed with the methods. In-
stead, we will focus on a single class of processes, seed
dispersal and seedling dispersion, because a spate of
recent papers on this subject provide both compelling
evidence of the potential power of the approach, and
illustrate some of the statistical challenges in applying
the methods.

LIKELIHOOD METHODS AND MODEL SELECTION

Maximum likelihood methods have a long history of
use for point and interval estimation in statistics. In
contrast, likelihood principles (Edwards 1992) have
only more gradually emerged in many fields of science
as the foundation for an alternative to traditional hy-
pothesis testing (e.g., Royall 1997, Johnson and Om-
land 2004, Hobbs and Hilborn 2006). The alternative
framework stresses the process of identifying and se-
lecting among competing models (as statements of mul-
tiple working hypotheses, sensu Chamberlain 1890), or
in the simplest case, among competing point estimates
of a parameter of a model (i.e., the maximum likelihood
estimate [MLE]). This is in stark contrast to the tra-
ditional frequentist approach of rejection of a single
‘‘null’’ hypothesis (particularly since the null hypoth-
esis is often of limited utility). In contrast to P values,
which do not provide a direct measure of the support
in the data for any particular alternative hypothesis,
likelihoods (or more commonly, log-likelihoods) can
be calculated for an entire set of alternative models and
a continuum of parameter values, and provide an ex-
plicit measure of the strength of evidence for any par-
ticular model or parameter value. Likelihood profiles
and ‘‘support intervals’’ (Edwards 1992) provide much
more intuitive alternatives to traditional confidence in-
tervals as a means of presenting uncertainty in a par-
ticular parameter estimate. Bayesian methods build on
the likelihood framework and provide an explicit way
of dealing with uncertainty in the parameter estimates.
The Bayesian approach is particularly well suited in
situations where parameter estimates will be used for
policy and decision-making (Ellison 1996, Hobbs and
Hilborn 2006).

On its own, the use of likelihood as a basis for model
selection will always favor more complex models,
without consideration of issues of parsimony (Burnham
and Anderson 2002). While there is no guarantee that
nature is simple, there are still compelling reasons to
favor simple explanations over complex ones. There
are a number of methods for model selection that com-
bine the fit of the model (as measured by log-likeli-
hood) and the complexity of the model (as measured
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by the number of parameters in the model; Johnson and
Omland 2004). The most common methods in use in
the ecological literature have been likelihood ratio tests
(LRT) and some form of the Akaike information cri-
terion (AIC). Likelihood ratio tests suffer from some
of the same limitations as traditional frequentist hy-
pothesis testing, namely, the need to conduct pairwise
comparisons of alternate models, using significance
tests based on the P value of the LRT statistic. AIC,
by comparison, is based on information theory prin-
ciples, and provides a quantitative measure that can be
used to rank all competing models by penalizing more
complex models (Burnham and Anderson 2002). In ef-
fect, AIC is a measure of the information lost by using
a given (simpler) model to approximate reality (Burn-
ham and Anderson 2002). Thus, models with the small-
est AIC are preferred. AIC and other information the-
ory based measures also provide a foundation for in-
ference based on model averaging (Burnham and An-
derson 2002, Johnson and Omland 2004).

There are four general steps involved in a likelihood
analysis: (1) model specification, (2) parameter esti-
mation using maximum likelihood methods, (3) model
comparison, and (4) model evaluation. The first step
also requires specification of the appropriate underly-
ing statistical distribution of the error term («). The
maximum likelihood estimates of the parameters of
each candidate model are then determined using either
one of the many standard local optimization methods
(i.e., Gauss-Newton or Simplex), or global optimiza-
tion methods such as simulated annealing (Goffe et al.
1994). Investigators also have the option of using
‘‘model averaging’’ to provide more robust parameter
estimates by combining results from alternate models
(Neuman 2003, Wintle et al. 2003). This is particularly
appropriate when there is no single model with over-
whelming support in the data. The models are then
typically compared by calculating the (log) likelihood
of observing the data, given the functional form (sci-
entific model) and the maximum likelihood estimates
of the parameters of the model, and then calculating
AIC, given log-likelihood, the number of parameters
in the model, and sample size (if correcting AIC due
to small numbers of samples relative to the number of
parameters) (Burnham and Anderson 2002). Once a
‘‘best’’ model has been identified, the final step in-
volves evaluation of the model in the traditional terms
of goodness of fit, bias, and prediction error. Competing
assumptions about distribution of model errors (e.g.,
normal vs. lognormal) can also be compared in a par-
allel manner.

While likelihood methods provide powerful tools for
hypothesis testing via model selection, the effective-
ness of the approach ultimately lies in the insight of
the investigators in choosing appropriate and interest-
ing scientific models, and their skills in collecting ap-
propriate data. Most of the recent examples of use of

likelihood methods in the ecological literature (and all
of the examples presented in this paper) involve anal-
ysis of comparative field data; however, the methods
are equally powerful in the analysis of experimental
data (remember that the ‘‘M’’ in GLM stands for ‘‘mod-
el’’). In particular, by forcing an investigator to focus
clearly on both the underlying models being compared
and the statistical properties of the data (appropriate
distribution of the errors in order to calculate likeli-
hood), likelihood-based analyses typically free the in-
vestigator from many of the restrictive assumptions of
traditional parametric analyses. From an educational
perspective, likelihood methods are slightly more dif-
ficult to master initially than traditional frequentist sta-
tistics, but students often find likelihood methods more
logical, comprehensive, and flexible.

A LIKELIHOOD FRAMEWORK FOR ANALYSIS OF

NEIGHBORHOOD PHENOMENA IN FORESTS

Forests are ideal candidates for neighborhood anal-
yses. Canopy trees provide the bulk of both the physical
and biological structure—living and dead, above- and
belowground—in forest ecosystems. The dominant
ecosystem fluxes (e.g., throughfall, litterfall, nutrient
uptake, leaching losses) are primarily vertical rather
than horizontal, and the identities of canopy trees over-
head and nearby have distinctive effects on a whole
host of ecosystem processes at the ‘‘neighborhood’’
scale (0–50 m; Binkley and Giardina 1998, Finzi et al.
1998a, b). It is possible to map the distributions of
forest trees in large plots (Condit 1998), and readily
obtainable measures of plant size such as dbh (diameter
of the stem at 1.35 m height) can be used in allometric
equations to predict above and belowground biomass
(Jenkins et al. 2003) and the physical dimensions of
tree crowns (e.g., Canham et al. 1994, Chave et al.
2003).

Consider the state of some ecosystem property y at
a point p (i.e., soil nutrient availability, seed rain,
growth of a plant at that location, etc.). For practical
reasons, y( p) is measured in a sample drawn from a
location of finite dimensions ( p9). The examples we
will discuss in this paper all employ simple, additive
models that begin with the general form

n

y(p9) 5 g(p9) f (x ) 1 « (1)O i
i51

for i 5 1, . . . , n ‘‘agents’’ (xi, typically trees) within
some maximum distance (r), and where g( p9) is some
function of the physical and biological attributes of
location p9. Each agent (xi) has a vector of attributes;
for a tree this would typically include species, dbh, and
location relative to location p9, and may also include
environmental conditions at the location of each tree.
In principle, r should be chosen to be large enough that
all agents that have measurable impact on the process
at location p9 are included. In practical terms, this is
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often not possible, and the analysis then suffers from
a biased sample. This has been a pervasive problem in
recent studies using inverse modeling to estimate seed
dispersal and seedling dispersion (i.e., Ribbens et al.
1994, Clark et al. 1998, LePage et al. 2000, Muller-
Landau et al. 2004). In principle, it is also possible to
use the analysis to provide estimates of the effective
neighborhood radius for a given process, i.e., the value
of r9 , r at which the effects of a neighboring agent
(e.g., a tree of a given species, size, etc.) become neg-
ligible for the process of interest. For instance, in our
analyses of neighborhood competition among trees we
estimate the maximum radius of the zone of influence
of neighbors on a focal tree located at p9 (Uriarte et
al. 2004, Canham et al. 2004).

Example: seed dispersal and seedling establishment

There have been three general approaches to the
characterization of patterns of seed dispersal and seed-
ling dispersion around parent trees (Greene and Cal-
ogeropoulos 2002): (1) direct measurement at locations
around single, isolated individuals (i.e., Kitajima and
Augspurger 1989, Stoyon and Wagner 2001), (2) de-
velopment of theoretical models based on the specific
mode of dispersal (particularly the aerodynamics of
wind dispersal) and parameterization from measure-
ments of the properties of both the propagules and the
dispersing agents (wind, water, animals, etc.; reviewed
in Turchin 1998), and (3) neighborhood analyses using
inverse modeling to estimate the parameters of dis-
persal functions (or ‘‘kernels’’), based on measure-
ments of seed rain or seedling abundance at a set of
sample locations, and a map of the spatial distribution
and sizes of potential parent trees in the vicinities of
the sample locations (e.g., Ribbens et al. 1994, Clark
et al. 1998, 1999, LePage et al. 2000, Muller-Landau
et al. 2004). We will outline the general approach used
in this third approach, and use it to highlight some of
the challenges in the use of likelihood methods.

Model specification and functional forms.—Recently
published neighborhood models of seed rain and seed-
ling dispersion (e.g., Ribbens et al. 1994, Clark et al.
1998, 1999, LePage et al. 2000) have all taken the
general form of Eq. 1. Models of seed rain generally
assume that seed input is independent of the environ-
ment at location p9, so g( p9) 5 1. In contrast, seedling
establishment is often strongly influenced by local con-
ditions. LePage et al. (2000) treated g( p9) as a vector
of scalars (ranging from 0 to 1) to take into account
variation in the favorability of a set of seedbed sub-
strates within sample quadrats. Most of the attention,
however, has been focused on the selection of an ap-
propriate functional form for f (xi). F(xi) is typically
decomposed into two, multiplicative parts:

adbhif (x ) 5 A (2)1 i 1 2C

and

1
bf (x ) 5 exp[2B(dist ) ] (3)2 i ih

where dbhi and disti are the size of and distance to tree
i, respectively; A, a, B, and b are estimated parameters,
and h is a normalization constant (i.e., the arcwise
integration of the exponential seed dispersal kernel).
The first part predicts total number of seeds or seedlings
(A) produced by potential parent trees within a specified
radius of the sampled point ( p9) and the second de-
scribes the dispersal kernel of seeds or seedlings. The
use of the normalization constant produces estimates
of A in units of the total number of seeds or seedlings
produced by a tree of a standard size (of dbh C)
throughout the seed shadow. Clark et al. (1999) treat
B as a random variable rather than a fixed parameter
in deriving their ‘‘2Dt’’ model. The parameter B de-
termines the speed in the decline of recruitment as the
distance to the parent tree increases while b determines
the general shape of the dispersal kernel.

All of the recent papers on seed rain and seedling
dispersion have assumed that the process is isotropic
(i.e., seed input does not vary as a function of the
direction to the source tree), but in an analysis of leaf
litterfall, Staelens et al. (2003) have introduced a sim-
ple modification of the B term to account for anisot-
ropy. We have tested for anisotropy in both seed and
seedling distributions on our own data, and find com-
mon but not ubiquitous presence of strong directional
effects in both seed rain and seedling distributions (C.
D. Canham, unpublished results). The anisotropy term
estimates both the angle and increment in distance at-
tributable to wind. Independent data on prevailing wind
direction at the experimental site can provide a reality
check for these estimates.

There are a number of critical assumptions embedded
in Eqs. 2 and 3, both implicitly and as an overt attempt
to simplify the analysis for methodological reasons.
Perhaps the most fundamental is the assumption that
seed rain is a monotonically declining function of dis-
tance from the parent tree (Eq. 3). This appears to be
a pervasive assumption in studies of seed dispersal, but
Greene and Calogeropoulos (2002) have argued per-
suasively that there is a high likelihood that the modal
dispersal distance is displaced some distance away
from the source tree for both wind and animal dispersed
species, and that a lognormal function is more appro-
priate than the exponential function in Eq. 3. Greene
et al. (2004) have examined seed and seedling data
from a number of temperate tree species at sites in
Quebec and find that a lognormal function often has
higher likelihood (and lower AIC) than monotonically
declining functions, including the ‘‘2Dt’’ function of
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Clark et al. (1999). We have reanalyzed the data on
seedling dispersion for five of the species presented in
LePage et al. (2000), and the lognormal function is a
better fit to the data than their original exponential
model for four of the five species (Appendix A). This
highlights one of the most important principles of a
likelihood approach (or indeed in any approach based
on model selection): the results are conditioned by the
scope of the models under consideration (Beissinger
and Snyder 2002). The likelihood analysis will identify
the ‘‘best’’ model, given the set of models under con-
sideration. This does not in any way guarantee that the
selected model is the best model among all possible
models. This leads to Recommendation #1:

It is always preferable to focus on models with func-
tional forms that are motivated by hypotheses about
underlying mechanisms, but it is equally important
to have an open mind and test competing models that
are flexible enough to allow the data to display novel
or unexpected patterns.

Parameter estimation.—
1. Sampling considerations and parameter trade-

offs.—The published studies have generally simplified
Eqs. 2 and 3 even further by assuming that the a and
b parameters are fixed. In all of the studies, a has been
fixed arbitrarily at a value of 2 (e.g., Ribbens et al.
1994, Clark et al. 1998, LePage et al. 2000, Muller-
Landau et al. 2004). As a result, total plant fecundity
is assumed to scale roughly linearly with plant biomass
(since tree biomass is approximately linearly related to
dbh2; Jenkins et al. 2003). This appears to be a rea-
sonable assumption, and Greene and Johnson (1994)
have integrated results from a wide range of empirical
studies on total plant fecundity using a relationship that
is linearly related to tree basal area (i.e., proportional
to dbh2) and a power function of seed mass. As Ribbens
et al. (1994) and Clark et al. (1998) note, the original
motivation for fixing the exponent (rather than esti-
mating the most likely value given the data) was related
to difficulties in parameter estimation due to trade-offs
between the A and a parameters. The trade-offs will
be particularly problematic if there is a limited range
of tree diameters in the neighborhoods (for example,
if the stands are even-aged, with relatively uniformly
sized canopy trees). There is much less a priori justi-
fication for arbitrarily fixing the value of b at any given
value (studies have used values ranging from 0.5 to 3
to arbitrarily produce various degrees of convexity in
the seed dispersal function). There is no compelling
mechanistic theory to support any given value of b,
and there is much less potential for trade-offs with the
B parameter as long as there is reasonable variation in
the distribution of distances to potential source trees

Parameter trade-offs, i.e., when the same value of
the response variable [ y( p9)] can occur as a result of
different combinations of two or more parameters, are

common in models with more than just a few variables.
One common consequence of parameter trade-offs is
that the likelihood surface is relatively flat in the region
of parameter space defined by the trade-off. The par-
ticular maximum likelihood parameter estimates pro-
duced by the optimization procedure may then vary
widely given idiosyncrasies of the data set. This can
seriously weaken the generality of the resulting model,
and limit the model’s value when applied to a new data
set.

We have explored the consequences of potential
trade-offs between A vs. a and B vs. b in a number of
both published and unpublished data sets, and using
hypothetical data sets generated using known param-
eter values in hypothetical stands. The hypothetical
data sets clearly demonstrate that it is possible to es-
timate all four parameters simultaneously as long as
there is reasonable variation in both size and distances
to parent trees around sample locations (Fig. 1, Ap-
pendix A). Our reanalysis of data for seedling disper-
sion of five species in LePage et al. (2000) (where a
was fixed at 2 and b was fixed at 3) suggests that the
assumption that fecundity is linearly related to parent
plant biomass (i.e., that a 5 2) is not well supported
by the data (Appendix B). We allowed a to vary from
0 to 4, and maximum likelihood estimates for the five
different species varied from 0.1 to 3.7, and models in
which a was allowed to vary typically had much stron-
ger support in the data than models in which it was
fixed at an arbitrary value of 2 (Appendix B). The
lowest estimated value for a occurred in a fast-growing,
relatively short-lived pioneer tree species (paper birch,
Betula papyrifera). For this species, fecundity does not
appear to vary significantly with tree size once the trees
are above the minimum tree size used in the analysis
(15 cm dbh). Values greater than 3 occurred for two
of the most shade tolerant species (western red cedar,
Thuja occidentalis; Amabilis fir, Abies amabilis). We
interpret these to reflect patterns in which the bulk of
seed production occurs in very large individuals. We
have explored this in subsequent analyses by estimating
an additional parameter to specify a minimum size
(dbh) below which trees are assumed to be nonrepro-
ductive. The estimated minimum reproductive size was
in the range from 26 to 29 cm dbh for two tree species
in a temperate rain forest in New Zealand (W. Ruscoe,
personal communication). Finally, it is worth noting
that none of the recently published analyses or the tests
described here allow for functional relationships that
are either asymptotic (i.e., fecundity reaches a plateau
at some size), or in which fecundity actually declines
at some point with increasing size (senescence).

These results suggest that, even given the importance
of avoiding parameter trade-offs, caution should be
used in fixing parameters at some arbitrary value (no
matter how reasonable the assumption may be). This
is a simple corollary to Recommendation #1. Never-
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FIG. 1. Dispersal functions estimated using maximum likelihood methods and a 50-m neighborhood radius for six hy-
pothetical data sets (A–F). The data sets were generated as a Poisson process with an expected mean density in each quadrat
given by Eqs. 2 and 3, with parameter values as described in Appendix A. The estimated functions [A(est)–F(est)] are
compared with the true, underlying functions (A–F) specified by the parameters in Appendix A. The functions are asymptotic,
and only the first 15 m are shown.

theless, the potential for parameter trade-offs is likely
to be high in neighborhood models. The most effective
means of avoiding trade-offs is to make sure that the
data set contains a wide range of values for the attri-
butes of the agents in the neighborhood model (i.e.,
tree size). The goal of the sampling design for a neigh-
borhood analysis is not to provide unbiased estimates
of the population of neighborhood represented in the
sample, but rather to provide a sufficient range of ob-
servations so that the estimation of parameters in the
neighborhood model is unbiased. This is a critical dis-
tinction: the former goal leads to the traditional dictates
of random sampling, etc., while the latter places a pre-
mium on distributing sampling effort across a gradient
of neighborhood conditions. This leads to Recommen-
dation #2:

Always be alert for potential parameter trade-offs,
and distribute sampling effort broadly across gra-
dients in the critical attributes of the agents in the
neighborhood models. Where the spatial distribution
and properties of the agents are known beforehand
(as in the case of studies in existing mapped forest
stands), that knowledge should be used to guide the
spatial distribution of sampling effort.

2. Bias due to misidentification of agents.—The
analysis of seed rain highlights another critical issue
in sampling design and data collection for neighbor-
hood analyses: the misidentification of the agents (xi)
in Eq. 1. The misidentification typically takes two
forms: (1) absence of data on distant agents (i.e., agents

located outside the mapped neighborhood), and (2) in-
clusion of ‘‘inactive’’ agents (i.e., inclusion of all trees
in the neighborhood for analysis of seed rain, when
only some unknown subset of the trees has actually
produced seed). Both forms of misidentification have
potentially serious implications for parameter estima-
tion and model interpretation. For many species of
trees, particularly wind-dispersed species, the asymp-
tote of the dispersal function is clearly nonzero, and
some fraction of seeds disperses long distances (Nathan
and Mueller-Landau 2000). In these cases, a finite
mapped stand represents a truncated data set of poten-
tial parent trees. In some ways, this problem is anal-
ogous to censored data problems in traditional survival
analyses.

Data sets with misidentified agents have the clear
potential to bias estimates of both fecundity (Eq. 2)
and dispersal (Eq. 3). The potential bias in estimating
fecundity is immediately evident: the analysis attri-
butes the observed seed rain or seedling density to the
agency of the i 5 1, . . . , n trees used in the analysis
for that sample location. If n does not include all source
trees, then the method will consistently overestimate
the average per-tree fecundity. It is worth pointing out
that this bias in parameter estimation does not neces-
sarily translate into bias in the average predicted seed
rain or seedling establishment when the functions are
used in a model such as SORTIE (Ribbens et al. 1994,
Pacala et al. 1996), as long as the model uses the same
neighborhood radius r to predict seed rain or seedling
establishment as was used in the analysis of field data.
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FIG. 2. Estimated dispersal functions using different neighborhood search distances and functional forms of the dispersal
kernel for a hypothetical data set generated from 1-km2 area of source trees and 200 1-m2 quadrats distributed in two transects
through a central 1-ha portion of the source area. Simulated seed rain was generated as a Poisson process, with a lognormal
dispersal function (Logn) and parameter values given in Appendix C. The ‘‘theoretical’’ curve is the true, underlying lognormal
dispersal function used to generate the hypothetical data set. The Weibull function allowed both B and b in Eq. 3 to vary.
The 2Dt curve was estimated using the dispersal function presented by Clark et al. (1999). Distances in the legend refer to
neighborhood search distances (radius).

The degree of bias in estimation of parameters re-
lated to the dispersal kernel (Eq. 3) caused by finite
mapping is not as self-evident. We have explored the
nature of the bias using Monte Carlo simulations with
hypothetical mapped stands with a variety of distri-
butions and abundances of parent trees to create sim-
ulated patterns of seed rain generated from known pa-
rameter values (Fig. 2, Appendix C). We then sampled
the patterns with varying sizes of mapped stands and
spatial distributions of samples within the stands (Ap-
pendix C). It’s hard to generalize because of the almost
infinite variety of potential distributions of source trees
and samples, but it appears that there is relatively little
bias in parameter estimation for the dispersal kernel
with a finite mapping of potential source trees as long
as the mapping extends well out past the mean dispersal
distance (MDD; i.e., r . 2 3 MDD; Fig. 2). When the
neighborhood radius (r) is in the range from 1 to 2 3
MDD, the analysis generally produces slight overes-
timates of dispersal and large overestimates of fecun-
dity. When the neighborhood radius is ,MDD, there
is considerable bias (and increasing uncertainty) in pa-
rameter estimates for both fecundity and the dispersal
kernel. The bottom line is that if f (xi) (Eq. 1) does not
go to zero at some finite distance (and in practical
terms, within the maximum distance included in the
neighborhood mapping), then there will be some degree
of bias in the parameter estimates. The bias may be
quite small and entirely acceptable, but it should be

acknowledged and reasonable attempts made to assess
its magnitude.

It is hard to generalize about the potential bias caused
by inclusion of ‘‘inactive’’ agents (i.e., inclusion of
nonreproductive trees) in the analysis. If only some
fraction of trees produce seed in a given year (as is
common for all sexually dimorphic species and for
many other tree species [cf. Herrera et al. 1998, Koenig
and Knops 2000]), then the estimates of fecundity will
clearly be a biased underestimate for the trees that ac-
tually reproduce, although the estimate may be unbi-
ased as a population average for all trees in the neigh-
borhood. We have done limited tests with hypothetical
data sets, and when the nonreproductive trees (inactive
agents) are a random subset of the adult trees, bias is
restricted to estimates of fecundity, while estimates of
the parameters of the dispersal kernel are generally
unaffected. There are, however, almost certainly cases
in nature where the spatial distribution of reproductive
vs. nonreproductive individuals is nonrandom, and the
potential bias in estimates of the dispersal function
caused by treating all trees as reproductive will depend
on the exact nature of the spatial pattern.

Existing studies have differed in how they address
this issue. Ribbens et al. (1994) and LePage et al.
(2000) used a fixed radius r representing the most con-
servative distance within which all potential parent
trees were known (i.e., used only the trees within a
mapped stand that were within a radius r of each sample
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FIG. 3. Dispersal functions estimated using different neighborhood configurations for the hypothetical data set and the
underlying ‘‘theoretical’’ parameters for a lognormal dispersal function used in Fig. 2. The ‘‘25 m radius’’ and ‘‘50 m radius’’
curves used a circular neighborhood of all trees within 25 and 50 m, respectively, of each sample location. The ‘‘0 m from
edge’’ curve represents a sample layout in which the two transects of adjacent 100 1-m2 quadrats were placed along two
opposite edges of a 100 3 100 m mapped stand. The ‘‘25 m from edge’’ and ‘‘50 m from edge’’ curves were estimated
using the same sample layout as the ‘‘0 m from edge’’ curve, but with a mapped stand that had an additional 25- or 50-m
buffer around the central 100 3 100 m stand.

location). The advantage of this approach is that each
sample has the same ‘‘censoring’’ (i.e., omitting all
trees beyond distance r). Another alternative is to use
all trees within a given stand in the analysis for all seed
traps in the stand (e.g., Clark et al. 1998). Since sample
locations differ in their position relative to the nearest
edge of the plot, the nature of the censoring will be
different for each observation. A third approach uses
data from within the mapped stands to create a hypo-
thetical ‘‘buffer’’ zone around the mapped stand to ac-
count for the contribution from parent trees outside the
mapped stand (Muller-Landau et al. 2004). The buffer
zone could have a uniform density of adult trees equiv-
alent to that found in the plot, or a random distribution
of parent trees drawn from size distributions of parent
trees inside the plot. We examined the consequences
of the first two options (using a conservative fixed min-
imum radius for the neighborhood around each sample,
vs. using all trees in the plot for all samples) using
hypothetical data sets (Fig. 3, Appendix C). Our results
suggest that the first option (used by Ribbens et al.
1994 and LePage et al. 2000) is unnecessarily conser-
vative. As long as there is a reasonable minimum radius
mapped around each sample (øMDD), then using the
additional but censored data for trees beyond that min-
imum radius appears to reduce potential bias (compare
the ‘‘25 m radius’’ curve with the ‘‘25 m from edge’’
curve in Fig. 3). If many of the quadrats are very near
the edge of the plot, however, even using all of the

trees in the plot can result in significant bias, partic-
ularly in the estimation of fecundity (Fig. 3, ‘‘0 m from
edge’’).

These simple simulations are hardly definitive, but
they highlight the benefits of large mapped stands for
studies of forest neighborhood dynamics (e.g., Uriarte
et al. 2004). They also lead to Recommendation #3:

Monte Carlo simulations with either hypothetical
neighborhoods or actual mapped forest stands can
and should be used to evaluate potential bias in pa-
rameter estimation given assumptions about param-
eter values and the size of the neighborhood included
in the analysis. In the absence of prior information
on the neighborhood size needed to reduce bias to
acceptable levels, be prepared to sample in very
large neighborhoods to reduce the potential for bias.

Model comparison: selecting the best model.—There
are a number of methods available for model compar-
ison, i.e., the assessment of the strength of support in
the data for alternate models (reviewed in Burnham
and Anderson 2002, Johnson and Omland 2004, Hobbs
and Hilborn 2006). Measures such as AIC combine the
likelihood of the model with a penalty for increasing
model complexity and in some cases a penalty for small
sample size relative to the number of parameters in the
model (i.e., AICcorr). AIC has the benefit of a foundation
in information theory as a basis for balancing goodness
of fit and model complexity: it is proportional to the
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expected Kullback-Leibler information lost through
use of the model to approximate reality (Burnham and
Anderson 2002). Thus, among a set of models, the
model with the lowest AIC (or AICcorr for small sample
sizes) is selected. The differences in AIC between al-
ternate models provide a measure of the relative dif-
ference in the strength of evidence for the different
models, relative to the complexity of the model. Akaike
weights (Wi) provide a means to normalize the strength
of evidence for one of a fixed set of alternate models
(AICi) relative to the best model (AICmin):

1
exp 2 (AIC 2 AIC )i min[ ]2

W 5 . (4)i
n 1

exp 2 (AIC 2 AIC )O j min[ ]2j51

The Akaike weights have two noteworthy uses: they
can be summed across all candidate models containing
a particular parameter to assess the relative importance
of that parameter, and the weights can be used in model
averaging to combine parameter estimates from across
the set of candidate models to produce more robust
estimates (Burnham and Anderson 2002, Hobbs and
Hilborn 2006).

The issue of parsimony lies at the heart of model
selection. While AIC provides an objective basis for
penalizing more complex models (on the basis of in-
formation theory), there is still room for judgment in
how far an investigator should go in pursuit of the
simplest model that is consistent with the data. Con-
sider the analysis of seedling dispersion by LePage et
al. (2000). Field observations suggested that variation
in seedbed substrate had a strong effect on seedling
establishment and subsequent density (LePage et al.
2000). They included a vector of estimated favorabil-
ities for eight distinct substrate types in the g( p9) term
in Eq. 1. Asymptotic support intervals for the parameter
estimates overlapped for many of the substrate favor-
ability terms. It is likely that there were simpler models
that could have been produced by combining similar
substrate favorability parameters, and that these sim-
pler models would have had lower AIC scores than the
full model. However, the number of plausible group-
ings, even based on a posteriori analysis of the esti-
mated differences among substrate types, is very large.
We would argue that the most sensible application of
the principle of parsimony in this case would be to
compare the full model with a simpler model that omit-
ted all consideration of substrate differences. If that
simpler model is demonstrably worse (i.e., has a higher
AIC), and there is an a priori interest in the parameter
estimates for the different substrates, then we would
argue that there is little benefit in exhaustively testing
alternate models to identify the most parsimonious
groupings of substrate types. On the other hand, we
can imagine cases where an investigator has a priori

interest in a categorical variable with m possible values,
but where the objective is to specifically test whether
there is support in the data for distinguishing between
different subsets of the m values. In this case, thorough
testing of alternate groupings would be justified (al-
though increasingly tedious as m increases).

This leads to Recommendation #4, which echoes oth-
er recent discussions of model selection methods (e.g.,
Burnham and Anderson 2002, Johnson and Omland
2004):

Application of the principle of parsimony in model
comparison does not require a systematic search for
the simplest possible model. Rather, a priori interests
of the investigators in testing a set of alternate modes
(representing multiple working hypotheses, sensu
Chamberlain 1890) should guide the model com-
parison process.

Model evaluation: How good is the best model?—
Once the best model among the set of candidates is
selected, it is still intuitive to ask: ‘‘How good is it?’’
In a likelihood framework, AIC provides an answer,
but only within the context of comparison with alter-
nate models evaluated using the same data set. Many
of the standard diagnostic tools for evaluating regres-
sion models, however, are also appropriate for evalu-
ating neighborhood models in a likelihood framework.
Perhaps the most important are measures of prediction
bias (typically assessed using the slope of the rela-
tionship between predicted and observed values) and
prediction error (using RMSE or comparable metrics).
We suspect that most ecologists using traditional re-
gression methods are much more interested in general
measures of goodness of fit such as R2 than in the
significance of test statistics comparing their model
with a null hypothesis. We also suspect that statisticians
find it tedious that practitioners are so preoccupied with
goodness of fit. To most investigators, a high R2 value
has meaning that transcends issues of parameter esti-
mation and hypothesis testing, and lends confidence
that the processes embodied in the model are an apt
(and close to sufficient) description of the system. In
a sense, goodness of fit is a measure of the skill (or
luck) of the investigator in properly specifying the
model and collecting appropriate data with minimal
error. This is not something that statisticians can gen-
erally help us with, so it’s perhaps not surprising that
the subjects of goodness of fit and model evaluation
receive relatively little attention in either standard text-
books on statistics or in recent treatments of likelihood
methods (e.g., Burnham and Anderson 2002).

While ecologists are probably most familiar with R2

as an overall measure of goodness of fit (51 2 SSR/
SST, where SSR is the sum of the squared residuals
and SST is the total sum of squares), there are a number
of alternative measures of the overall goodness of fit
of a model, including x2 and measures of deviance. It
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is likely that R2 is favored by many investigators simply
because it has such an intuitive interpretation and a
scale that is invariant with respect to sample size or
the measurement scale of the response variable. For
models with normally distributed errors and where the
mean and the variance are not correlated, R2 can indeed
provide a useful measure of goodness of fit. There are
many cases, however, where either process or mea-
surement error is not normally distributed, and is better
described by a lognormal or the gamma distribution
where the variance is an explicit function of the mean.
This is particularly true for studies of seed rain and
seedling dispersion, where the likelihood functions typ-
ically have either a Poisson or negative binomial dis-
tribution (e.g., Clark et al. 1998). For either distribu-
tion, the variance of the process is proportional to the
mean (and literally equal to the mean for a Poisson
process). Thus, a measure such as R2 will vary as a
function of the mean of the expected values of the
model. An investigator can then increase R2 simply by
sampling in such a way that the expected values are
small (i.e., using small quadrats or short census inter-
vals).

Clark (2003) addresses a far more profound issue
regarding the assessment and interpretation of uncer-
tainty in model predictions. Students are routinely
taught to assess the adequacy of sampling effort in
terms of degree of confidence in a parameter estimate.
In contrast, there are both practical and theoretical is-
sues for which assessment of the variability in a pa-
rameter or a prediction is of as much interest as the
assessment of its central tendency (Clark et al. 2003).
Investigators typically consider uncertainty to be a
function of measurement error and sampling effort, and
something that could be reduced through more diligent
effort. It is worth restating the obvious, however, that
any analyses involving organisms with either genotypic
or phenotypic variability will encounter ‘‘process’’ er-
ror as well as ‘‘measurement’’ error. Hierarchical
Bayesian models (Clark 2003, Clark et al. 2003, Lat-
imer et al. 2006) offer a powerful method of explicitly
incorporating much more complex (and biologically
reasonable) error structures than the traditional ap-
proach used in Eq. 1, including explicit incorporation
of variability in parameters. Clark (2003) illustrates the
benefits of incorporating more realistic error structures
in models of population dynamics. We expect that those
benefits also pertain to a much wider range of studies
(e.g., Hoeting et al. 2006). This leads to Recommen-
dation #5:

Variability is a fact of life for biologists. Rather than
treat error as a nuisance, there are good reasons to
seek more explicit and biologically realistic incor-
poration of error terms and uncertainty in neigh-
borhood models. Hierarchical Bayesian models ap-
pear to offer a promising approach.

FUTURE CHALLENGES IN NEIGHBORHOOD ANALYSES

To date, neighborhood models of the type we have
described have largely been in the domain of studies
of population dynamics and resource competition for
sessile organisms (particularly plants). We believe that
there is much wider potential application of the meth-
ods for any ecological process where the spatial con-
figuration of component organisms plays a central role.
Studies of leaf litterfall (Ferrari and Sugita 1996, Stae-
lens et al. 2003) represent one obvious (but perhaps
trivial) example. The approach is likely to be seen as
brute phenomenology by investigators who seek mech-
anistic explanation of ecosystem processes at much
more reductionist levels. For studies of forest ecosys-
tem dynamics, however, we would suggest that there
is already overwhelming empirical evidence that tree
species differ significantly in their effects on a whole
host of ecosystem processes, and a growing literature
on the exact mechanisms that underlie these differenc-
es. There have been a number of attempts to link mod-
els of tree population dynamics with models of forest
ecosystem dynamics, but other than the pioneering
work with LINKAGES (Post and Pastor 1996), none
to our knowledge have yet explicitly incorporated a
neighborhood approach.

Neighborhood models will be critical where there
are nonadditive effects of mixtures of the influence of
different species (Finzi and Canham 1998, Gartner and
Cardon 2004). In our framework, nonadditive effects
would be accommodated using higher-order (nonline-
ar) terms in Eq. 1. If there are strong nonlinearities,
nonspatial models will give biased predictions of the
effects of the mixtures, as a result of Jensen’s inequality
(Pastor et al. 2000, Duursma and Robinson 2003). For
example, both antagonistic and synergistic effects of
species mixtures are common in studies of leaf litter
decomposition (Gartner and Cardon 2004). There has
been some recent progress in predicting at least the
direction of the effect (antagonistic vs. synergistic) of
different mixtures of species from the traits of com-
ponent species (Wardle et al. 1998, Eviner and Chapin
2003), but the wide range of empirical results found
in recent studies suggests that a great deal more field
research will be needed to predict the magnitude of
nonadditive effects. The challenge for a neighborhood
approach is to use the results of recent experiments and
process studies to construct relatively simple models
that capture the mechanisms that underlie these non-
additive effects, without resorting to the brute force
(and extremely large number of resulting parameters)
required to describe any potential nonadditive effects
among all possible subsets of n species (Finzi and Can-
ham 1998).
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