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We present a critical review of current trends in research of spatio-temporal
development of forests. The paper addresses (1) field methods for the development
of spatially-explicit models of forest dynamics and their integration in models of forest
dynamics, (2) strengths and limitations of traditional patch models versus spatially-
explicit, individual-based models, and (3) the potential for moment-based methods in
the analysis of forest dynamics. These topics are discussed with reference to their
potential for solving open questions in the studies of forest dynamics. The study of
spatio-temporal processes provides a link between pattern and process in plant
communities, and plays a crucial role in understanding ecosystem dynamics. In the
last decade, the development of spatially-explicit, individual-based models shifted the
focus of forest dynamics modelling from the dynamics of discrete patches to the
interactions among individual organisms, thus encapsulating the theory of
‘‘neighbourhood’’ dynamics. In turn, the stochastic properties and the complexity of
spatially-explicit, individual-based models gave rise to the development of a new suite
of so-called moment-based models. These new models describe the dynamics of
individuals and of pairs of individuals in terms of their densities, thus directly capturing
second-order information on spatial structure. So far, this approach has not been
applied to forests; we indicate extensions needed for such applications. Moment-based
models may be an important complement to spatially explicit individual-based models
in developing a general spatial theory of forest dynamics. However, both kinds of
models currently focus on fine scales, whereas a critical issue in forest dynamics is to
understand the interaction of fine-scale processes with coarser-scale disturbances. To
obtain a more complete picture of forest dynamics, the relevant links and interactions
between fine-, intermediate-, and coarse-scale processes ought to be identified.
Intensive links between modelling work and field studies designed across different
scales are a promising means to create a new perspective on forest dynamics.
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Studies of forest dynamics, i.e. of the changes of forest

composition and structure over time, have received much

scientific attention since the early concepts of forest

succession by Cowles and Clements (Cowles 1899,

Clements 1916 cited in Glenn�/Lewin and van der

Maarel 1992). The spatio-temporal development of

forests may be described as changes of tree populations

due to birth and colonization, growth, and death of

trees. This biotic development is driven by disturbance

events set on a stage of a spatially heterogeneous

environment (White 1979, Pickett and White 1985, Spies

and Turner 1999).

Spatio-temporal processes involve the development of

spatial patterns over time, thus providing a link between

pattern and process in plant communities, and playing a

crucial role in understanding ecosystem dynamics. An

important cornerstone in the study of spatio-temporal

dynamics was Watt’s synthesis ‘‘pattern and process in

the plant community’’ (Watt 1947). He described plant

communities as a mosaic of patches in different phases,

with an orderly time sequence of phases at a given place.

Watt’s (1947) findings from his long-term field studies

were extraordinarily influential during the second half of

the last century (Leibundgut 1959, van der Maarel

1996). In particular, Watt’s identification of phases in

the dynamics of beech forests laid the foundation for the

concept of gap-phase dynamics, which has become a

dominant theme in forest ecology (Urban and Shugart

1992). Research on gap-phase dynamics originally fo-

cused on ecosystems in humid climates, where natural

disturbances were generally of low intensity and small

spatial extent (Brokaw 1985, Runkle 1985). At the same

time, scientists working in more xeric ecosystems were

documenting the pervasive role of coarse-scale distur-

bance by fires in structuring the spatio-temporal dy-

namics of entire landscapes (Lertzman et al. 1998).

These two lines of inquiry were united through the

development of a theory of patch dynamics, in which the

spatio-temporal dynamics of the system were described

through a demographic analysis of the birth, growth,

and death of patches rather than of individual organisms

(Levin and Paine 1974, Shugart and West 1977, Urban

1990, Belsky and Canham 1994, Weishampel and Urban

1996). In its basic form, the theory treats ecosystems as

mosaics of discrete and internally homogeneous patches

created by disturbance events, embedded in a relatively

uniform ‘‘matrix’’. Through succession, disturbance

patches gradually fade into the background matrix.

This approach has now been applied to a wide range

of terrestrial and aquatic ecosystems, ranging from

tropical savannas to coastal sea-grass communities

(Loucks et al. 1985, Sousa 1985, Dayton et al. 1994,

Botts 1997, Ramage and Schiel 1999, Jensen and Bell

2001). It has also had wide application in conservation

biology (Pickett and Thompson 1978, Shugart and West

1981, White 1987, Baker 1992). As a first approximation,

patch dynamics provide an apt and useful conceptual

model for many ecosystems and landscapes.

The reason why Watt (1947) treated plant commu-

nities as a mosaic of patches was pragmatic: he found it

‘‘impractical’’ to describe communities in ‘‘terms of their

characters’’ (the individual plants) and ‘‘their spatial

relations to each other’’. More than 50 years after Watt’s

(1947) seminal paper, advances in spatial ecology allow

for quantifications of both, the effects on and the

responses of individual plants to their local spatial

structure (Pacala 1997). The importance of local pro-

cesses in plant interactions and of their effects on

community dynamics is now widely acknowledged (Si-

lander and Pacala 1985, Tilman 1994, Lehman and

Tilman 1997, Amarasekare 2003, Murrell and Law

2003), giving rise to the development of a neighbour-

hood-oriented perspective in plant community dynamics

(Stoll and Weiner 2000, Purves and Law 2002a). In forest

dynamics, recognition of neighbourhood processes has

so far mainly been in terms of the growth response of

target trees to surrounding competitors (Biging and

Dobbertin 1992, Stoll et al. 1994, Soares and Tomé

1999, Ledermann and Stage 2001). The community

response to neighbourhood interactions, however, has

rarely been characterised. Consequently, forest dynamics

research faces major challenges (i) to describe vegetation

development and spatial structures; (ii) to identify the

relevant processes that generate spatial structures, e.g.

disturbances, dispersal, species interactions, or herbiv-

ory; and (iii) to understand the consequences of the so

generated spatial structures for community dynamics.

The third challenge entails integrating processes acting

at different scales, e.g. by studying the interaction of fine-

scale neighbourhood processes with coarser-scale dis-

turbances. To better understand the complex interplay of

these processes and of their different intensity in driving

forest dynamics in different systems and, within systems,

at different temporal and spatial scales, forest ecologists
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have collected a variety of empirical information. This

includes information on disturbance regimes (Lorimer

1984, Pickett and White 1985, Lorimer and Frelich 1989,

Duncan and Stewart 1991, Veblen et al. 1994, Parshall

1995, Villalba and Veblen 1997, Mast et al. 1998, Fischer

et al. 2002) and on biotic processes and life-history traits

of tree species in relation to heterogeneous habitats and

disturbances (Runkle 1981, Lusk and Smith 1998,

Lavorel and Chesson 1995, Lertzman 1995, Lehmann

and Tilman 1997).

At the same time, the need for a comprehensive

representation of the complex processes and their

potential for simulation called for the application of

computer models. The conceptual shift in forest dy-

namics described above, from the patch to the indivi-

dual, was paralleled by the development of models of

ecosystems dynamics. Starting from patch models, rapid

advances in computing power over the past 20 years have

led to a proliferation of spatially explicit individual-

based models (DeAngelis and Gross 1992, Judson 1994,

Grimm 1999). These models allow some degree of

mechanistic realism to be incorporated into the model-

ling of neighbourhood interactions. Most recently,

developments in moment-based methods in discrete

and continuous space have sought to bridge the gulf

between oversimplified, analytical mean-field models

and highly complex, individual-based simulation models.

Moment-based methods enable analysis of the non-

linear, spatially localized, stochastic processes that

underlie biologically generated spatial patterns (Pacala

and Levin 1997, Dieckmann and Law 2000). Yet, with

the exception of a pair-approximation model on a spatial

lattice (Iwasa 2000), such approaches have not yet been

applied to forest dynamics.

Although the need for intensive integration of empiri-

cal and modelling approaches is increasingly acknowl-

edged (Jeltsch and Moloney 2002), examples of such

integration in forest dynamics research are still rare. This

also applies to the large body of spatial ecological theory

which remains poorly tested by empirical methods

(Murrell et al. 2001, Amarasekare 2003).

In this review we first present an overview of current

field methods for studying biotic processes and distur-

bances. We stress the importance of including spatial

processes in studies of forest dynamics and present two

different modelling approaches that incorporate a

neighbourhood-oriented perspective on forest dynamics

by discussing, in turn, spatially-explicit, individual-based

models and a new class of moment-based models. We

particularly emphasize the latter family of models,

because, so far, they have hardly been applied to forest

dynamics studies and are not as well known to the

ecological community. We suggest ways to strengthen the

link between ecological theory and forest dynamics

studies and discuss options for better integrating em-

pirical work and modelling in addressing future chal-

lenges in forest dynamics research.

Field methods

There are three basic approaches available for collecting

information on change of forests with time: retrospective

(e.g. ‘‘historical’’ photographs, pollen records), prospec-

tive (e.g. permanent sample plots), and space-for-time

approaches (e.g. chronosequences). In the absence of

long time series on permanent sample plots (PSPs),

retrospective methods and chronosequences are most

frequently used for studies of forest dynamics. The use of

chronosequences requires the existence of similar sites, a

precondition which is hard to meet. Pickett (1991)

mentioned the suitability of space-for-time substitutions

for getting insight into trends in life-history types, the

order of dominant species, stages of succession, and

regional differences. Which approach is the most appro-

priate depends mainly on the studied ecosystem, the

research question, the available data, and also on the

spatial scale of the studied processes. The formulation of

a research question and the subsequent design of a field

study always include a decision about grain and extent,

even if not explicitly stated. The selection of the

appropriate scale for the research question in mind is

probably the most crucial decision that has to be made

beforehand. However, such a decision is not always

straightforward, particularly when the scale of the

studied process is unclear.

Models of spatio-temporal processes rely heavily on

empirical data that characterize the following processes

in both space and time: (i) colonization (seed produc-

tion, seed dispersal, and germination requirements), (ii)

growth (growth potentials, competitive relationships),

and (iii) death (mortality rates). Below, we briefly review

field methods for collecting empirical data for these

demographic processes and for characterizing distur-

bance regimes.

Colonization

Phenological observations and seed traps provide basic

information on minimum diameters (or age) of matura-

tion, flowering patterns, as well as the timing, frequency,

and quantity of seed production for many species. More

difficult to obtain is quantitative information on dis-

persal distances and patterns of dispersed seeds. Seed

rain studies usually estimate seed production and

dispersal from randomly placed seed traps in forest

stands or in open areas using some regular orientation of

seed traps around or adjacent to the potential seed

source (Clark et al. 1999). This is based on assumptions

on the origin of seeds in the trap which may bias the
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results (Nathan and Mueller-Landau 2000). More

precise predictions of seed dispersal patterns can be

gained through the development of mechanistic models

of seed dispersal (Nathan and Mueller-Landau 2000,

Nathan et al. 2001). A second approach is to measure

distance and distribution of already germinated

seeds. Inverse modelling approaches using maximum-

likelihood estimation were successfully used to estimate

distribution and numbers of recruits relative to the

distribution of parent trees in a stand (Ribbens et al.

1994). Problems with all these methods arise in dealing

with far dispersers and stochastic (extreme) events that

transport seeds over long distances, but may be very

important for the survival and distribution of a parti-

cular species. Mechanistic models that couple seed

release with aerodynamic processes are the most promis-

ing approach to derive dispersal distances of

wind dispersed seeds of far dispersers (Greene and

Johnson 1993, Clark et al. 1999, Jongejans and Telenius

2001, Nathan et al. 2001, 2002, 2003). While these

models describe the movement of seeds from point

sources, Cousens and Rawlinson (2001) showed that

both the shape of plant canopies and the position of

seeds within canopies influence the shape of seed

shadows, particularly for species with short dispersal

distances. More complexity is added when considering

secondary dispersal or differential seed deposition pat-

terns on different microsites, caused by different rough-

ness of surfaces or preferences of zoochorous dispersed

seeds (Nathan and Mueller-Landau 2000). Methods

using already germinated seeds simultaneously account

for non-random seed distribution and germination

requirements, such as availability and distribution of

safe sites, but the underlying processes are then very

difficult to interpret.

Growth

In many models growth is included as the potential

growth for an individual tree relative to its size and

reduced by a competition factor, the latter being

estimated based on the distance to neighbouring trees

(Wykoff and Monserud 1987) or through direct light

measurements (Pacala et al. 1993). The potential growth

rate of a species is relatively easy to obtain using

standard methods of growth and yield research, e.g.

height-growth curves developed from stem analysis of

top-height trees of even-aged stands (Heger 1968,

Carmean and Lenthall 1989, Chen et al. 1998). However,

actual growth varies from year to year mainly due to age

(and size) related growth pattern, climate fluctuations,

and changes in the light environment due to distur-

bances. Growth measurements on seedlings, saplings,

and mature trees on permanent plots, in relation to

measurements of local resources, provide the best source

of data for characterizing the response of species to

resource variation. This can also include the feedback of

neighbouring trees on resource availability. In the

absence of long-term data, the use of tree rings to

measure past growth along resource gradients provides a

means for quantifying species-specific growth-responses

(Pacala et al. 1994).

Mortality

Mortality is best studied in PSPs as they follow tree

and cohort development through time, thus measuring

mortality directly. In the absence of PSPs, dendrochro-

nological methods can provide estimates of past

mortality rates (Dynesius and Jonsson 1991). Alterna-

tively, growth�/mortality relationships for various

tree species can be established using growth as an

indicator of tree vigour and thus of mortality risk

(Kobe et al. 1995, Wyckoff and Clark 2000, Gratzer

et al. 2004).

Disturbance regimes

Depending on the system and type of disturbance,

methods to reconstruct disturbance history include (1)

descriptions and measurements of change in forest

horizontal structure (Tanaka and Nakashizuka 1997,

Valverde and Silvertown 1997), (2) age structure analysis

(Duncan and Stewart 1991, Quigley and Platt 1996), and

(3) dendroecological reconstructions of fire histories and

gap creation events (Lorimer and Frelich 1989, Brown

and Swetnam 1994, Cherubini et al. 1996, Nowacki and

Abrams 1997, Villalba and Veblen 1997). A variety of

methods have been developed for quantifying interac-

tions between different types of disturbances (Fischer

1992, Veblen et al. 1994) and between weather patterns

and disturbance events (Villalba and Veblen 1997, 1998,

Mast et al. 1998), especially for forest fires and insect

outbreaks. Except for studies using charcoal records and

pollen data (Calcote 1995, Long et al. 1998), most of

these methods are limited in the time domain, as they

cannot provide information on events dating back to

before the last stand-replacing disturbance. Limitations

in space are imposed by the extent and grain of the study

and the data available for the reconstruction. These

limitations must be made explicit since disturbance

regimes can only be defined for a particular area.

Consequently, results obtained through such studies

are only valid at the observed scale, while, e.g. extra-

polating results to larger scales will underestimate

coarse-scale disturbances (Wimberly et al. 2000).
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Models of forest dynamics

Patch models

The numerous patch models available in the literature

can be sub-divided into two major categories:

. Finite state automata (Shugart 1998) or state-transi-

tion models classify vegetation on a given patch into

a finite number of states and assign transition

probabilities from one state to another, depending

on the presence of a system-driving operator. The

most common operator in these models is the passage

of time, but others can readily be considered, for

instance, disturbances such as fire (Kessel and Potter

1980, Gullison and Bourque 2001).

. Individual tree models keep track of the birth,

growth, and death of each individual tree on the

simulated patches (Botkin et al. 1972, Shugart and

West 1977, Kienast 1987, Leemans and Prentice 1989,

Bugmann 1994). The earliest of these models were

developed in forestry to predict the growth of forest

stands (Newnham 1964).

Most patch models based on individual trees follow the

concept of the JABOWA model pioneered by Botkin et

al. in the 1970s. The model was originally developed as

part of the Hubbard Brook ecosystem study in the

north-eastern forests of the US to explain species

composition and succession at sites along an altitudinal

gradient under current climate (Botkin et al. 1972,

Botkin 1993). The key assumptions of JABOWA are:

. The forest consists of many small patches of land

each 0.01�/0.1 ha in size which is approximately the

area an adult individual tree can dominate. On the

one hand this allows for an individual to achieve

maximum size, on the other hand the death of a

single large tree significantly influences the light

regime at a patch.

. No interaction among the simulated patches is

considered (i.e. the forest is either envisaged as a

mosaic of independent patches or the simulated

patches are taken to be independent samples from

the entire forest).

. The position of each tree on a simulated patch is

unknown. Horizontally, the model assumes homo-

geneous competition throughout the entire patch.

. All leaf biomass of each simulated tree is located at

the top of the tree in an infinitely thin layer.

Over the years, there have been many modifications to

the original model formulation. For comprehensive

reviews see Bugmann (2001), Keane et al. (2001) and

Price et al. (2001). Because of the relative ease of

parameter estimation, numerous models were developed

for a diverse range of ecosystems, including models for

alpine tundra (Humphries et al. 1996) and prairie

(Coffin and Lauenroth 1990). A major reason for

ongoing model development and application is the need

for individual-based simulators of vegetation change

sensitive to climate, to assess the likely impacts of global

climate change on forest composition and structure.

Several review papers questioned the applicability of

classical gap models for research on impacts of climate

change due to erroneous scaling assumptions and

misleading parameterization schemes (Loehle and Le-

Blanc 1996, Schenk 1996). Besides attempts to add more

physiological realism with particular emphasis on a more

mechanistic representation of carbon fixation and allo-

cation (Friend et al. 1993, Prentice et al. 1993, Bugmann

et al. 1997), model variants were developed that consider

spatial interaction between patches. Amongst the earliest

of these spatially explicit model variants was the ZELIG-

model (Smith and Urban 1988, Urban 1990) where the

patches are arranged on a rectangular grid correspond-

ing to a total area of up to several hectares. Such model

variants are useful for examining seed dispersal and

other landscape processes that involve spatial interac-

tions between patches, such as fire and insect outbreaks

(Lexer and Hönninger 2001).

Spatially explicit individual-based models

Spatially explicit, individual-based models (SEIBs) such

as ZELIG (Urban et al. 1989), and SORTIE (Pacala et

al. 1996), shift the focus from dynamics of discrete

patches to interactions among individual organisms, and

allow a more detailed treatment of environmental

heterogeneity at a variety of spatial scales.

Specifically, models such as ZELIG, which operates

within the patch model paradigm of homogeneous

competition within patches, and SORTIE, where dy-

namics evolve as a result of local dispersal and local

competition, treat forests as sets of individual trees

rather than as mosaics of discrete gaps. In changing

the focus, these models encapsulate an emerging theory

of ‘‘neighbourhood’’ dynamics, in which fine-scale

spatial interactions regulate the demography of compo-

nent tree species (Pacala et al. 1996). The specific

mechanisms for these spatial processes take many forms:

. Seed dispersal and seedling recruitment are highly

localized processes for many forest trees. Estimates of

the mean seed and seedling dispersion distances away

from parent trees are less than 20 m for many

temperate tree species (Ribbens et al. 1994, Clark et

al. 1998, LePage et al. 2000), although longer

distance dispersal is also important (Greene and

Johnson 1993, Clark et al. 1999). Stand structure

and the presence of gaps within a stand also
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influences effective seed dispersal distances (LePage

et al. 2000).

. The spatial distribution and abundance of tree seed

predators can be strongly influenced by the spatial

distribution of seed sources (particularly of large-

seeded tree species), with potentially significant

effects on patterns of tree seedling establishment

(Schnurr et al. 2002, Schnurr et al. 2004).

. The activity of even large herbivores such as white-

tailed deer (Odocoileus virginianus ) may be influenced

by fine-scale spatial variation in both soil nutrient

availability and the abundance and nitrogen content

of saplings that form a critical winter food source

(Tripler et al. 2002).

. Resource competition between sessile plants is clearly

a spatial process. In the case of competition for light,

the geometry of both solar radiation and plant

canopies interacts with the spatial distribution of

individuals to determine the availability of light to

individuals in a forest (Canham et al. 1994, 1999).

There is a large literature on tree competition based

on phenomenological analyses of the distance to, size,

and species of neighbouring trees (Bella 1971). Non-

spatial models are often effective in describing

relatively uniform and even-aged stands, but spatial

models provide distinct advantages in more hetero-

geneous stands (Lorimer 1983).

. Tree species vary significantly in their effects on soil

chemistry and soil nutrient availability (Zinke 1962,

Finzi et al. 1998). The effects of mixtures of different

tree species are not necessarily additive (Finzi and

Canham 1998). When species effects are non-additive,

non-spatial models are likely to either overestimate or

underestimate average resource conditions within a

stand.

The shift to SEIB models has been facilitated by the

development of new methods of examining field data, in

which measurements of environmental factors (e.g. light)

and critical demographic rates (e.g. recruitment, growth,

and mortality) are analyzed in terms of the spatial

distributions of neighbouring trees and of physical

environmental factors (Canham et al. 1994, 1999, 2004,

Pacala et al. 1994, Ribbens et al. 1994, Kobe et al. 1995,

LePage et al. 2000), as outlined in the section on field

methods above. These methods allow a tight linkage

between the models and the parameterization of these

models based on field data, thus allowing quantification

of uncertainty in both parameter values and model

predictions (Pacala et al. 1996).

The shift to a neighbourhood perspective has also had

important implications for analysis of forest disturbance

regimes. Past studies of wind disturbance have tended to

focus on the extremes of a gradient in windstorm

severity, from very small, isolated treefall gaps with

discrete edges (Brokaw 1985, Runkle 1985), to large,

catastrophic disturbance in which most canopy trees are

felled (Canham and Loucks 1984, Peterson 2000). It is

becoming increasingly clear that the wind disturbances

which most frequently drive forest ecosystem dynamics

in many temperate and tropical forests falls in between

these extremes (Walker et al. 1991). Intermediate-sever-

ity storms (e.g. hurricanes, typhoons, extra-tropical

cyclones, severe thunderstorms) create a wide range of

damage across large regions, as a result of heterogeneity

in topography and the meteorology of the storm event

(Boose et al. 1994, Peterson and Pickett 1995), and

because of variation among species and tree sizes in

susceptibility to mortality or damage from winds of a

given severity (Zimmerman et al. 1994, Canham et al.

2001). The extremely heterogeneous patterns of canopy

disturbance created by these events are very difficult to

incorporate in traditional patch models or theories.

Patch dynamic models (Levin and Paine 1974) have

traditionally used patch size as a metric of the magnitude

of disturbance effect. This becomes untenable for inter-

mediate-severity storms, in part because of the difficulty

of identifying discrete edges to patches, but more

fundamentally because it ignores the pronounced het-

erogeneity at a wide range of spatial scales that is so

distinctive in intermediate-severity disturbance events.

Moment-based models

SEIB models have two properties, stochasticity and

complexity, that cause difficulties when trying to extract

succinct ecological predictions from these models. Sto-

chasticity stems from the fact that �/ at the level of the

individual �/ colonization, growth, and death are ran-

dom events: in the corresponding models, no two

realizations of a spatio-temporal process, based on

different sets of random numbers, will give the same

results. This can be instructive, for example, in estimat-

ing the expected natural range of variability in a finite-

sized plot. But stochasticity also hides the underlying

ecological signal, unless a great many realizations are

carried out to obtain reliable averages. The complexity of

SEIB models is evident from the intricate mechanisms

they often try to incorporate, as noted above. Given the

scope for incorporating such complexity, investigations

by different groups of scientists will almost always differ

in at least a few structural details, making it difficult to

compare results and to assess reliably the structural

stability of SEIB models (Grimm 1999).

These considerations motivate the development of

theory in which the deterministic ecological signal

embedded in SEIB models is itself the state variable,

and in which mechanistic detail is subsumed by standard

model components (Bolker and Pacala 1997, Law and

Dieckmann 2000b). So-called moment-based models are

a promising step in this direction, and are currently
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being developed by translating earlier work in statistical

physics into the context of biological populations of

interacting individuals. The models jointly deal with the

dynamics of the density pi of individuals of type i, and of

the density of pairs pij (r) of individuals of type i and j

that are situated a distance r apart in space (types i and j

could represent species for instance, or states such as size

classes, or both). These densities are the first two

moments of a spatial distribution of individuals, calcu-

lated by integration over the spatial distribution. The

pair density is a member of a class of second-order

statistics widely used in spatial pattern analysis (Dale

et al. 2002, Wiegand and Moloney 2004); other related

statistics include Ripley’s K, the semi(co)variance, and

the spatial covariance (Ripley 1977, Burrough 1995).

One can think of moment-based models as stepping

from the static description of spatial pattern to the

dynamics of how spatial structures changes over time.

Since the density of individuals lies at the core of

nonspatial ecological theory, moment-based models

contain the traditional nonspatial theory of population

dynamics as a special case.

Since the original work on moment-based models in

physics had focused on lattices, it was natural that

lattice-based ecological models, the so-called pair ap-

proximation models, were also developed first (Matsuda

et al. 1992). These models describe the densities pij of ij

pairs where j is in a neighbourhood (of constant size z) of

i on a lattice; there is no dependence on r in this case as

all individuals in the neighbourhood are equivalent.

Since the density of individuals can be obtained from the

density of pairs by summing over partners, pi�ajpij; the

former need not to be treated separately. To describe the

dynamics d
dt

pij of pair densities, the pair approximation

assumes that the densities of triplets with a focal

individual i can simply be expressed as pijk�/pijpk. This

can be interpreted by saying that the pair approximation

only traces spatial correlations among neighbours and

that, accordingly, any correlations of higher order or at

longer distance are ignored. Despite this simplification,

pair approximation models have been applied success-

fully to a fairly wide spectrum of ecological settings

(Harada and Iwasa 1994, Satō et al. 1994, Harada et al.

1995, van Baalen 2000) and so far provide the only

moment-based models that have been applied to forests

(Iwasa 2000).

Individual trees, however, do not grow naturally on

neatly arranged lattices, and therefore it is helpful to

extend moment-based methods to spatial patterns given

by collections of points in continuous space (Bolker and

Pacala 1997, Dieckmann and Law 2000, Law and

Dieckmann 2000a). Moment-based models in contin-

uous space can be based on different assumptions about

how to express the density of triplets pijk (rij, rjk, rki) in

terms of pair densities. Such assumptions are called

‘‘moment closures’’ and have recently been investigated

in some detail (Dieckmann and Law 2000, Murrell et al.

2004). They are all based on the idea that the dynamics

of triplet densities equilibrate more quickly than those of

pair densities, such that, after a short transitory period,

pair densities are sufficient to characterize the spatial

structure of a system. While this time scale separation is

often justified, certain spatio-temporal processes may

defy such simplification, especially when containing

long-range spatial structures.

Moment-based models in continuous space typically

involve so-called dispersal and interaction kernels. As

noted earlier, dispersal kernels are already well estab-

lished in forest ecology and simply describe the prob-

ability density with which a seed of type i ends up at

distance r from its parent. In animal ecology, a dispersal

kernel can also be used to describe the movement of

individuals throughout their life. An interaction kernel

cij (r) weighs the impact of an individual j on an

individual i over a spatial distance r. Such impact may

lead, for example, to decreased growth or fecundity, or

to increased mortality. Integrating the weights cij (r)

over all distances r, we recover the interaction coeffi-

cients ãij�f
�

0
cij(r) 2prdr of traditional ecological mod-

els such as the Lotka�/Volterra model of competition

(Begon et al. 1996). By contrast, for spatially structured

populations the interaction coefficients are given by aij�
1

pipj
f
�

0
cij(r)pij(r) 2prdr and, importantly, thus turn out to

directly depend on the pair densities pij (r) that serve as

the state variables of moment-based models in contin-

uous space. An interaction kernel thus allows for

summing over all interacting pairs in a neighbourhood

with the appropriate weights and thus formally brings

such sums into a description of the spatio-temporal

population dynamics. By defining SEIB models in terms

of dispersal and interaction kernels and by then studying

the resultant dynamics of pair densities, moment-based

models help to establish a more canonical modelling

platform. This is likely to aid the systematic comparison

of results between models of different systems.

Moment-based models can account for two types of

corrections relative to nonspatial models (Dieckmann

and Law 2000). First are correlation corrections, arising

from the non-random distribution of individuals, as

measured by pair densities. The traditional non-spatial

models do not consider spatial correlations, which

implies pij�/pipj and thus aij� ãij: Once some spatial

structure is present, aij�ãij is different from zero and

measures corrections resulting from the spatial correla-

tions present in the ecological pattern. A second type of

improvement �/ ignored by non-spatial models but

potentially captured by moment-based models �/ are

fluctuation corrections. These arise from the fact that,

even in a hypothetical, infinitely large habitat, the

number of individuals in a local neighbourhood is finite

and varies from one neighbourhood to another, with the
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result that different individuals are bound to experience

different local environments. Unless the ecological

responses of individuals to densities in their neighbour-

hood are linear �/ which rarely will be the case �/ their

response to the average local environment then differs

from their average response to the different environ-

ments. In particular canopy structure and asymmetric

competition for light are likely to induce such non-

linearities in the response of individuals to their local

environment. Moment-based models can capture these

potentially large differences through fluctuation correc-

tions.

There still exists an appreciable gap between suffi-

ciently realistic models of forest dynamics and models

currently amenable to theoretical analyses. Three exten-

sions could strengthen the utility of moment-based

models for studying forest dynamics:

. The most important extension needed is systematic

incorporation of size structure in moment-based

models. With such additional structure, pair densities

take three arguments, pij (si, sj, r), and describe the

densities of pairs formed by individuals of species i

and size si with individuals of species j and size sj at

distance r. The study of competition kernels has

already gone some way towards analyzing these

dependencies on size and distance (Biging and

Dobbertin 1992, Stoll et al. 1994, Soares and Tomé

1999, Ledermann and Stage 2001, Purves and Law

2002b), but their effects on population dynamics have

still to be explored.

. A second important extension will be the incorpora-

tion of heterogeneities in local environmental condi-

tions e. This can be achieved through the introduction

of extra pair densities into moment-based models, pie

(r) for density-like environmental factors (like nutri-

ent concentrations) or pie (e, r) for other factors (like

temperature; Law et al. 2001).

. Thirdly, disturbances could be implemented in mo-

ment-based models by describing the signature of

their impact on pair densities. Depending on their

frequency of occurrence, such disturbances can be

incorporated in moment-based models either as a

continuous deterministic flow or through discrete

stochastic events.

Perspectives and conclusions

The role of SEIB models

SEIB models in forest ecology have been a great success:

they overcome the often artificial spatial discreteness of

patch models, respect the discreteness of individuals, and

encourage a mechanistic representation of factors deter-

mining vital rates. It was through the development of

SEIB models that the importance of neighbourhood

processes for forest dynamics was demonstrated (Pacala

and Deutschman 1995, Kubo et al. 1996, Pacala 1997,

Jeltsch and Moloney 2002, Purves and Law 2002a,b).

The neighbourhood-oriented perspective adopted in

SEIB models thus provides a general framework for

studying and understanding forest dynamics by over-

coming key limitations of traditional non-spatial models.

However, SEIB models are computationally demanding

and thus limited to stand scales. For applications at

coarser scales, spatially explicit patch models are cur-

rently the only feasible modelling approach at hand

(Bugmann 2001).

The application of SEIB models helped to identify a

number of fine-scale neighbourhood processes as driving

forces for tree-population dynamics. However, while

some of these processes �/ e.g. seed dispersal (Chave

1999, Clark et al. 1999, Pastor et al. 1999, Bleher et al.

2002) and competition for light (Canham et al. 1994,

1999, Chave 1999) �/ are well described and readily

included, other pattern generating processes �/ like

plant�/soil feedback or interaction with herbivores �/

are still only rarely included in tree population models,

even though they are empirically well documented

(Binkley and Giardina 1998, Van Breemen and Finzi

1998, Pastor et al. 1999). Thus, if one of the major

challenges in understanding forest dynamics remains the

identification of important pattern-generating mechan-

isms at different spatial and temporal scales (Levin and

Pacala 1997, Parker and Pickett 1998), SEIB models

through their close linkage with field studies, provide a

promising route for this endeavour, because of their rich

potential for exploring the consequences of intricate

spatial interactions.

The potential of moment-based models

The promise of moment-based models lies in their

canonical structure and greater mathematical tractabil-

ity. As an alternative to including ever more mechanistic

detail, moment-based models may be a good comple-

ment to SEIB models in developing a general spatial

theory of forest dynamics. Yet, the extensions needed for

moment-based models to reflect some specific features of

forest dynamics are by no means trivial: for instance,

incorporating size dependences, environmental hetero-

geneities, and spatial disturbances pose many interesting

challenges for theorists and empiricists. Even with the

simplification that moment-based models allow, there

will be intricate couplings of variables in the dynamics.

While it would be unrealistic to expect general analytical

mathematical insights from such models in the immedi-

ate future, numerical analyses are readily feasible.

Yet, whenever a wide range of complex ecological

mechanisms is to be considered simultaneously, or when

a tactical match with the quantitative details of a
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particular ecosystem is required and sufficient data is

available for model parameterisation, individual-based

models are likely to prove superior because of their

essentially unlimited flexibility. In other cases, moment-

based models may offer a useful middle ground.

Links between field studies and models

Even with more models developed and parameterised,

empirical studies will remain fundamental to progress in

understanding forest dynamics. Both SEIB and moment-

based models have stimulated recent empirical work in

forest dynamics by highlighting the need for quantifying

certain mechanistic assumptions about, e.g. competition

and dispersal. The development of new methods of

analysis of field data is largely triggered by the current

gaps in our knowledge, which become evident in the

process of parameterising the corresponding models.

Still, information on resource�/mortality and resource�/

growth responses, as well as on dispersal distances, is

missing for many tree species around the world (Chave

1999, Gratzer et al. 2004). Such information is not only

necessary for modelling forest dynamics but also for its

own right and for applications in forest management.

Future interactions between models and field work

will go far beyond the traditional unidirectional way of

data collection for model development and parameter-

isation. It is already clear now that models will become a

more integral part of studies on forest dynamics: models

will be used for hypothesis generation before empirical

studies are devised and carried out, for assessing the

grain and extent of empirical studies adequate for

capturing essential properties of the ecological processes

under investigation, and for extrapolating results of

empirical studies to longer time scales. It will thus be

fruitful to explicitly plan for the interaction between

empirical and modelling work by identifying the desired

connections in advance, allowing for bi-directional feed-

back and continuous progress.

One of the crucial problems in understanding forest

dynamics is the frequent lack of adequate data for

validating model results. Long-term ecological studies

ought to fill this gap by capturing slow phenomena, rare

events, as well as subtle and complex processes (Pickett

1991). To achieve this in the context of forest dynamics,

long-term ecological studies will have to extend over

decades.

On the interaction of fine scale neighbourhood

processes with coarser scale disturbances

A critical issue in forest dynamics is to understand the

interaction of fine-scale neighbourhood processes with

coarser-scale disturbances. In the section on field

methods we presented state-of-the-art methods for

analyzing disturbance regimes. All of the presented

approaches struggle with temporal and spatial limita-

tions (Lertzman and Fall 1998). At least the former

limitation can be overcome by using spatially explicit

models. So far, however, only few attempts in this

direction have been undertaken (Wiegand et al. 1998,

Canham et al. 2001, Ménard et al. 2002).

By linking a neighbourhood-oriented perspective on

forest development with an approach from disturbance

ecology, Dubé et al. (2001) bridged the gap between

these two realms of investigating forest dynamics. They

characterized canopy gaps according to a species’ light

requirements and could thus move beyond the (practi-

cally useful but theoretically often unjustified) geome-

trical characterization of gaps or expanded gaps. This

can be seen as an extension of the neighbourhood

perspective towards disturbance ecology. Most studies

simulating disturbances are based on simply removing

trees of different diameters (Menard et al. 2002), even

though this practice ignores the specific characteristics

of disturbance events. In general, disturbances vary not

only in size but also greatly differ in severity and

residuals (Turner et al. 1998): they therefore leave

‘‘fingerprints’’ in the landscape that are specific to the

characteristics of the disturbance (disturbance agents

and intensity) but also depend on species- and structure-

specific susceptibilities to the disturbances. Models of

disturbances might have to consider these species-

specific feedback mechanisms (the creation of micro-

sites and the response of regeneration to these spatial

heterogeneities and to the presence of surviving seed

trees) in order to capture the essential effects of

disturbances on forest dynamics.

If also interactions between disturbances are to be

considered, even more complexity has to be added to

models. Such complexity across scales requires strategies

for dealing with scaling issues. The most promising way

of addressing this would be an application of hierarchy

theory (Pattee 1973, Allen and Hoekstra 1992, Ahl and

Allen 1996). The theory is based on the assumption that

ecological systems exhibit a loose vertical and horizontal

coupling in structure and function and are thus highly

decomposable. Such a loose coupling allows for distin-

guishing between different hierarchical levels (vertical)

and sub-systems (horizontal) at the same vertical level

(Parker and Pickett 1998, Wu 1999, Wu and David

2002). However, whether or not coupling in nature

typically are sufficiently loose to justify such simplifica-

tion currently remains an open empirical question.

Both SEIB models and moment-based methods in

continuous space are working on fine spatial scales. To

obtain a more complete picture of forest dynamics, and

to move towards a general theory for the spatio-

temporal developments of forests, all relevant links and

interactions between processes at fine, intermediate, and

coarse spatial scales must be identified and understood.
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Field studies designed across different scales, in con-

junction with models describing the spatio-temporal

development of forests, would seem to offer the most

promising means for creating a new perspective on forest

dynamics.
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dispersal, breeding system, tree density and the spatial
pattern of trees-a simulation approach. �/ Basic Appl.
Ecol. 3: 115�/123.

Bolker, B. and Pacala, S. W. 1997. Using moment equations
to understand stochastically driven spatial pattern forma-
tion in ecological systems. �/ Theor. Popul. Biol. 52: 179�/

197.
Boose, E. R., Foster, D. R. and Marcheterre, F. 1994. Hurricane

impacts to tropical and temperate forest landscapes. �/ Ecol.
Monogr. 64: 369�/400.

Botkin, D. B. 1993. Forest dynamics: an ecological model.
�/ Oxford Univ. Press.

Botkin, D. B., Janak, J. F. and Wallis, J. R. 1972. Rationale,
limitations, and assumptions of a northeastern forest
simulator. �/ IBM J. Res. Develop. 16: 106�/116.

Botts, P. S. 1997. Spatial pattern patch dynamics and succes-
sional change: chironomid assemblages in a Lake Erie
coastal wetland. �/ Freshwater Biol. 37: 277�/286.

Brokaw, N. V. L. 1985. Treefalls, regrowth, and community
structure in tropical forests. �/ In: Pickett, S. T. A. and
White, P. (eds), The ecology of natural disturbance and
patch dynamics. Academic Press, pp. 53�/69.

Brown, P. M. and Swetnam, T. W. 1994. A cross-dated fire
history from coast redwood near Redwood National Park,
California. �/ Can. J. For. Res. 24: 21�/31.

Bugmann, H. 1994. On the ecology of mountainous forests in a
changing climate: a simulation study. �/ Ph.D. thesis No.
10’638, Swiss Federal Inst. of Technology Zuerich (ETHZ),
Switzerland.

Bugmann, H. 2001. �/ A review of forest gap models. �/ Climatic
Change 51: 259�/305.

Bugmann, H., Grote, R., Lasch, P. et al. 1997. A new forest gap
model to study the effects of environmental change on forest
structure and functioning. �/ In: Mohren, G. M. J., Kramer,
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