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MULTI-MODEL ANALYSIS OF TREE COMPETITION ALONG

ENVIRONMENTAL GRADIENTS IN SOUTHERN NEW ENGLAND FORESTS
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Unstitute of Ecosystem Studies, Box AB, Millbrook, New York 12545 USA

Abstract. Robust predictions of competitive interactions among canopy trees and
variation in tree growth along environmental gradients represent key challenges for the
management of mixed-species, uneven-aged forests. We analyzed the effects of competition on
tree growth along environmental gradients for eight of the most common tree species in
southern New England and southeastern New York using forest inventory and analysis (FIA)
data, information theoretic decision criteria, and multi-model inference to evaluate models.
The suite of models estimated growth of individual trees as a species-specific function of
average potential diameter growth, tree diameter at breast height, local environmental
conditions, and crowding by neighboring trees. We used ordination based on the relative basal
area of species to generate a measure of site conditions in each plot. Two ordination axes were
consistent with variation in species abundance along moisture and fertility gradients.
Estimated potential growth varied along at least one of these axes for six of the eight species;
peak relative abundance of less shade-tolerant species was in all cases displaced away from
sites where they showed maximum potential growth. Our crowding functions estimate the
strength of competitive effects of neighbors; only one species showed support for the
hypothesis that all species of competitors have equivalent effects on growth. The relative
weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for
Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a
more robust platform for prediction than that based solely on the best model. We show that
predictions based on the selected best models dramatically overestimated differences between
species relative to predictions based on the averaged set of models.

Key words:  competition, environmental gradients; forest management; information theory; multi-model
inference; neighborhood analysis; neighborhood competition index; neutral theory, niche, sustainable forest

management.

INTRODUCTION

Growth and yield models and the enormous body of
empirical research on which they were based provided a
predictive foundation for even-aged forest management.
The recent shift to partial harvesting and all-aged
management on both public and private land in the
northeastern United States (USDA Forest Service 2001)
reflects a recognition that sustainable forestry requires
managing forests to optimize a wide range of ecosystem
characteristics (Kohm and Franklin 1997, Burton et al.
2003) and social values (Kimmins 1995), not simply
timber yield. The shift away from even-aged manage-
ment, however, presents a host of new scientific
challenges. The spatial patterns of partial harvests have
important implications for understory light levels for
regeneration (e.g., Canham et al. 1994, Beaudet et al.
2002), including the potential for invasion by exotic
species (Knapp and Canham 2000). The spatial distri-
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bution of seed trees has strong effects on the distribution
and abundance of regeneration, particularly given the
limited dispersal distances of most northeastern tree
species (Ribbens et al. 1994, Clark et al. 1999, Greene et
al. 2004). And, perhaps most important from an
economic standpoint, the spatial pattern of harvests
determines the degree of release from competition with
potentially dramatic effects on growth and survival of
residual trees (e.g., Wimberly and Bare 1996, Coates et
al. 2003, Canham et al. 2004, 2006). Predicting stand
development and yield following partial harvesting
requires consideration of an almost infinite variety of
spatial configurations of the level of removal of different
species and tree sizes within a stand.

These new challenges of managing and maintaining
structurally complex stands require a shift in emphasis
away from more site-specific, empirical models that
emphasize prediction, to more mechanistic, spatially
explicit models that incorporate the consequences of
varying environments and dynamic spatial structure
within stands. A number of recent analyses of models
used in forest management have highlighted the need for
hybrid approaches that balance the predictive power of
empirical models with the generality of process models.
(e.g., Pinkard and Battaglia 2001, Peng et al. 2002,
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Milner et al. 2003, Robinson and Ek 2003, Seidl et al.
2005, Canham et al. 2006).

We follow an approach recently developed by
Canham et al. (2006) that uses simple distance-depend-
ent neighborhood competition models, parameterized
using field data, that describe the responses of individual
trees to variation in both local neighborhood competi-
tion and site environmental conditions. More generally,
the models address several important theoretical ques-
tions concerning the role of competition among adult
trees in structuring forest communities. These include
insights into whether and which species of trees are
functionally equivalent competitors; evidence for the
displacement of realized niches as a result of competi-
tion; and, quantitative estimates of the strength of
interspecific competition between pairs of species.

Traditional modeling approaches (including Canham
et al. 2006) estimate parameters for a set of candidate
models specified independently of the data analysis.
Inference is then normally based only on the parameter
estimates and structure of the best model (i.e., best-
model inference or BMI). This is appropriate when
comparisons between alternate models are used as a
form of hypothesis testing (Johnson and Omland 2004).
When prediction is an explicit goal of a model (as in
many forest management applications), however, BMI
may be misleading if there are alternate models with
reasonable support in the data (Burnham and Anderson
2002). Information theory provides a basis for evaluat-
ing the weight of evidence in support of alternate models
relative to the “best” model (Burnham and Anderson
2002) that hypothesis testing methods do not. This
multi-model inference (MMI) provides an alternative
framework, in which inference is based on the relative
merits of the subset of all the models tested which have
sufficient support in the data as measured by their
weight of evidence (Burnham and Anderson 2002).
MMI is particularly important if the predictions vary
markedly among the set of alternate models (Burnham
and Anderson 2002). Failure to incorporate information
from alternate models may represent an unappreciated
form of prediction error in ecological models. In this
paper, we expand on the approach of Canham et al.
(2006) and explore the use of multi-model inference for
predicting the effects of neighborhood competition on
tree growth along environmental gradients in southern
New England forests.

METHODS

Our method analyzes tree growth in mapped stands
(Canham et al. 2004, 2006, Uriarte et al. 2004a, b) to
simultaneously estimate (1) average potential growth on
an optimal site in the absence of competition as a
function of target tree size, (2) variation in potential
growth along environmental gradients, and (3) the
magnitude of the competitive effects of neighboring
trees on target tree growth as a function of the species,
size, and distance to neighboring trees. Full details of the
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approach we use can be found in Canham et al. (2006).
We review the most salient aspects here. All model
functions have been designed to be incorporated into the
forest dynamics model SORTIE-ND, which is a plat-
form for spatially explicit, individual tree modeling of
forest dynamics, based on the earlier SORTIE model
(Pacala et al. 1996; SORTIE-ND, available online).?

Study area and data

Our study area covers western and central Connect-
icut, western and central Massachusetts, and south-
eastern New York, roughly centered on Great Mountain
Forest (GMF) in northwestern Connecticut, where
SORTIE was first parameterized (Pacala et al. 1996).
There are a variety of forest types in this region ranging
from oak-dominated forests on drier and more southern
and eastern sites, to northern hardwood forests on more
mesic and northern sites. We analyze growth of adult
trees of eight of the most common species across the
region: American beech (Fagus grandifolia Ehrh.), east-
ern hemlock (Tsuga canadensis L.), sugar maple (Acer
saccharum Marsh.), yellow birch (Betula allegheniensis
Britton), red maple (A. rubrum L.), northern red oak
(Quercus rubra L.), white ash (Fraxinus americana L.),
and white pine (Pinus strobus L.) (Table 1, listed in rank
order of shade tolerance; Kobe et al. 1995).

Our analyses make use of data on tree growth
collected by the USDA Forest Service forest inventory
and analysis (FIA) program. The FIA data sets
comprise a random sample, stratified by land cover,
with approximately one plot per 6000 acres (2428 ha) of
forestland. Of the 597 FIA plots in our study region, we
used the 420 plots which had not been logged during the
census interval. Plots used in our analysis had growth
data from censuses taken between 1978 and 1984 and
between 1992 and 1998, at intervals of 12-14 years.
Specific field methods vary slightly among the three
states, but are easily reconciled for our analysis. The
earlier sampling protocols in all three states used 16.1 or
14.7 m radius circular plots in which all trees >12.5 cm
diameter at breast height (dbh) were mapped and
measured. The most recent New York census kept the
original plot and also sampled all trees >12.5 cm dbh.
The more recent censuses in Massachusetts and Con-
necticut, however, used a slightly modified plot struc-
ture, where each plot consists of four distinct subplots
that are ~7.3 m radius. One subplot is embedded in the
center of the older plot (USDA 1998). The change in
sampling protocol allows calculation of growth for trees
only within the central 7.3 m radius subplot. The
original plot gives the configuration of the competitive
neighborhoods as they existed at the time of the earlier
census, (i.e., the spatial locations, species, and dbh of all
trees) within at least a 7.3 m radius around each tree in
the remeasured subplot. Based on studies in other

3 (www.sortie-nd.org)
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TaBLE 1. Summary statistics of forest inventory and analysis (FIA) plots in the study area.
Neighbors/
No. dbh target tree . Mean distance (m)
target No. Conspecific

Species Code trees plots Median Max. Min. Max. Mean (%) All  Conspecific Interspecific
Fagus grandifolia FAGR 100 43 20.6 627 0 18 8.82 39.6 4.78 4.57 4.90
Tsuga canadensis TSCA 312 78 23.2 564 0 23 11.08 57.5 4.86 4.83 4.90
Acer saccharum ACSA 169 79 24.7 986 0 16 7.85 32,5 4.86 4.68 4.98
Betula alleghaniensis BEAL 69 41 20.8 38.1 1 20 8.70 15.6 4.77 4.77 4.76
Acer rubrum ACRU 590 197 21.7 1049 0 24 8.54 48.6 4.67 4.37 4.96
Quercus rubra QURU 260 103 24.4 556 1 18 7.85 49.0 4.78 4.48 5.00
Fraxinus americana  FRAM 100 58 21.9 526 2 17 7.46 37.8 4.94 4.82 4.98
Pinus strobus PIST 239 82 26.7 762 0 19 8.98 57.4 4.72 4.65 4.82
Weighted averages 23.2 8.82 4.75

systems (Canham et al. 2004, Uriarte et al. 20044, b), the
7.3 m radius is sufficient to capture the bulk of the
effects of neighboring trees. There was ample variation
among plots in the numbers of neighboring trees and
their spatial configurations and species mixtures to allow
us to estimate growth across a wide range of competitive
conditions (Table 1).

Characterizing environmental variation among plots

FIA field protocols called for direct site assessment at
the time of the surveys, but the data were too subjective
and inconsistent to be of use in this analysis. Thus, we
used ordination of plots based on the relative basal area
among species within plots to generate an indirect
measure of site conditions in each plot. Using relative
basal area minimizes the influence of overly large trees
or many small ones. Detrended correspondence analysis
(DCA; Hill and Gauch 1980) and nonmetric multi-
dimensional scaling (NMS; Kruskall 1964, Mather 1976)
are both commonly used to ordinate forest community
data (McCune and Grace 2002, McGarigal et al. 2000,
Gotelli and Ellison 2004). We tried both methods using
the implementations in PC-Ord version 4.28 (McCune
and Mefford 1999) with the most recent census data for
the full set of 597 plots to further minimize the potential
for outliers to influence the results. The full data set had
sufficient numbers of 15 species that were common
enough to be used in the ordination (>350 trees and
present in >7.5% of the 597 plots).

Our basic criterion for determining the usefulness of
the ordination was whether the axis scores of the species
centroids were interpretable as environmental gradients
given knowledge of the autecologies of the major tree
species in the region (McGarigal et al. 2000). For the
NMS ordination, we used the Sorensen distance
measure and followed the procedure outlined by
McCune and Grace (2002:131-136). The recommended
data reduction was to three dimensions and the stress
was 21.1, indicating unreliable results (Kruskall 1964,
Gotelli and Ellison 2004, McCune and Grace 2002).
Moreover, the NMS ordination did not reveal inter-
pretable patterns of species distribution along the axes.

The two axes of the DCA ordination with the highest
coefficients of determination, in contrast, appeared to
represent gradients in soil moisture (axis 1) and soil
fertility (axis 3), so these two axes were used for our
analyses.

A spatially explicit analysis of tree growth

The analyses provide empirical estimates of parame-
ters that quantify the relative effects of tree size, site
conditions and the sum of all competitive effects of
neighboring trees on the growth of a target tree species.
Growth of each of the eight species of trees was analyzed
separately. The basic model has four components
(Canham et al. 2006): (1) peak average potential
diameter growth in the absence of competition (PotG,
in mm/yr), and three sets of scalar modifiers ranging
from 0 to 1 that quantify the effects on average potential
growth of (2) initial target tree size (dbh, in cm), (3) local
environmental (site) conditions, as measured by ordi-
nation axis scores, and (4) crowding by neighboring
trees,

growth = PotG X size effect X site effect X crowding effect
(1)

where growth is measured in mm/yr.

Tree size effect.—We estimate the effect of the size of
the target tree on potential growth using a lognormal
function:

(2)

In(dbh/5)7?
o

size effect = ¢~'/? {

where 0 is the dbh (of the target tree) at which PotG
occurs, and o determines the breadth of the function.
The function can be monotonically increasing (i.e., when
d is very large), decreasing (i.e., when 0 is very small), or
have a single “hump” and a skew to the left when 9 is
within the normal range of dbh (Canham et al. 2004).
Site effect—Ordination results identified two major
axes of variation in relative abundance of species that
could be readily interpreted as variation in site
conditions among plots. We used two alternative
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functions to estimate the relationship between growth of
trees in a plot and variation in environmental conditions
as reflected in the ordination scores (Eqs. 3 and 4). The
following equation produces a Gaussian distribution
along an environmental axis, but can also produce
sigmoidal, monotonic curves:

: 2 . 2
site effect = ¢!/ axisli = X0\ " e 112 axis2; — X29
X1, X2,
3)

where axisl; and axis2; are the observed ordination axis
scores for plot i, X1y and X2, are the estimated axis 1
and 2 scores, respectively, at which maximum potential
growth occurs, and X1, and X2, are estimated
parameters that control the breadth of the function
(i.e., the variance of the Gaussian distribution). Note
that axes 1 and 2 are abstractions and can refer to any
two axes of environmental information, whether they
are from ordinations of data or any other approach to
indexing or scoring environmental variables. As an
alternate model, we test the bivariate logistic equation,
which produces a non-sigmoidal monotonic curve:

site effect = | 1 + axisl; 7X1h>< 1+ axis2,) = (4)
! - X1, X2

where all of the terms are as defined for Eq. 3, except
that the original axis scores have been rescaled to be
greater than zero by adding the minimum axis score plus
0.1 to each value. For both Egs. 3 and 4, we also tested
univariate functions in which terms for one of the two
axes were dropped from the analysis if initial results
indicated that there was no response of a target species
to that axis.

Competition.—We assume that growth declines mo-
notonically as a function of a neighborhood competition
index (NCI):

.. —(C. D
competition = ¢~ CNC

(5)

If D =1, this is a traditional negative exponential
function. If D > 1, the function is sigmoidal, with an
initially slow rate of decline that steepens as NCI
increases. NCI specifies the net competitive effect of all
neighbors on the target tree as a function of species (A;),
size (o), and distance () to neighbor trees (Canham et
al. 2004, 2006):

S n

N

=1 j=1

(dbh;)*

NCI = i
(distance;;)

(6)

The species-specific competition index (A;) ranges from 0
to 1 and allows for differences among species in their
competitive effect on the target tree. To facilitate
comparisons of A, across different species of target trees,
the values for each species or group of competitors are
rescaled as a fraction of the highest A;. As in Canham et
al. (2006), we evaluated three alternate sets of competi-
tion models with different groupings of neighbors. The
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“full” model used separate A; for each species of
competitor for which there were greater than 20
neighbors (summed across all target trees) in the 420
plots. All other neighboring species were pooled into an
“other species” category. We also specified an “intra-
specific vs. interspecific” model that estimated separate
A; for intraspecific competitors and interspecific com-
petitors, and an “equivalent competitors” model in
which all species of competitors had equivalent effects
(i.e., A; =1 for all neighbors).

We also tested whether a given level of crowding had a
greater or lesser effect as a function of the size of the
target tree by allowing the exponential decay coefficient
(C) in Eq. 5 to vary as a function of target tree size
(dbh,) (Canham et al. 2004, 2006):

C = C' X dbh!. (7)

If v < 0, then sensitivity to crowding declines as target
tree dbh increases (i.e., smaller trees suffer a greater
reduction in growth from a given level of crowding than
do larger trees). This effect is independent of the
underlying effect of target tree size on potential growth
in the absence of competition (Eq. 2). The crowding
function distinguishes between the competitive “effects”
of neighbors (A;, o, and B in Eq. 6) and the competitive
“response” of the target plant (C and D in Eq. 5, and vy
in Eq. 7) (Goldberg 1990, Goldberg and Landa 1991).

Analytical approach

Parameter estimation and model evaluation—We use
simulated annealing (a global optimization procedure,
Goffe et al. 1994) to estimate the maximum likelihood
parameters and support intervals for all terms in the
models. The analyses were done using software written
specifically for this study using Delphi for Windows
(Version 6, Borland Software Corporation, Cupertino,
California, USA). As in many of the earlier studies (e.g.,
Canham et al. 2004, 2006, Uriarte et al. 2004a) an
assumption of normally distributed residuals with the
variance proportional to the mean was appropriate for
the data. This was incorporated into the analysis by
estimating an additional parameter to determine the
scaling of the variance to the mean (e.g., Pacala et al.
1994). We compared models using the Akaike informa-
tion criterion corrected for small sample size (AIC
Burnham and Anderson 2002). Goodness of fit of the
models was evaluated using R? (defined as 1 — ssE/ssT)
and the slope of the regression of observed vs. predicted
(as a measure of bias).

Multi-model inference—Together, Eqs. 2-7 comprise
the complete model described by Eq. 1. Alternate
models are formed in two ways: (1) by using Eqs. 3
and 4, which represent two different (i.e., non-nested)
possible theoretical models of growth along an environ-
mental gradient, and (2) by forming nested models by
dropping selected components or parameters for which
there is at most a weak response of the target tree as
suggested by predicted values using the complete model.
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TaBLE 2. Parameter values with support intervals (in parentheses) for the AIC, selected best model for each species.
Best model NCI scaling parameters Neighbor Neighbor

Species  Slope R? Comp. €1 MaxRG C D size, o distance, B
FAGR 0975 0.342 inter. 0.59 5.15 35.43 1.48 0.91 0.005

(0.57, 0.60) (4.93,5.19) (34.93, 35.93) (1.44,1.50) (0.9, 1.02) 0, 0.17)
TSCA 1.000  0.397 inter. 0.55 5.62 14.89 1.18 0.25

(0.54, 0.57) (5.56, 5.73) (14.38, 15.38) (1.17, 1.27) ~ (0.24, 0.28)
ACSA 0979 0.190 full 0.85 3.89 453.45 1.77 1.35 0.72

(0.84, 0.86) (3.86, 3.93) (448.9, 457.9) (1.75, 1.79)  (1.34, 1.37)  (0.72, 0.73)
BEAL 1.019 0364  equi. 0.52 5.82 2.33 0.94 1.00

(0.50, 0.53) (5.76, 6.0) (1.83, 2.83) (0.93, 1.0) (0.99, 1.09)
ACRU 0991 0.191  full 1.06 5.06 47.54 1.49 0.33

(1.05, 1.07) (5.01, 5.11) (47.03, 48.03) (1.48, 1.52)  (0.325, 0.331)
QURU 0996 0.498  full 0.42 7.27 332.44 1.40 0.00

(0.41, 0.43) (7.20, 7.34) (329.1, 335.8) (1.39, 1.41)  (0.00, 0.002)
FRAM 0983 0.353  full 0.83 8.54 90.32 2.49 0.00

(0.81, 0.84) (8.37, 8.63) (89.42, 91.22) (2.44, 2.52)  (0.00, 0.002)
PIST 0.991 0.382  full 1.09 11.04 636.96 1.94 0.47

(1.09, 1.15)  (10.93, 11.15)  (624.2, 643.3) (1.93,1.96) (0.44, 0.47)

Notes: Species are listed in approximate decreasing order of shade tolerance. Species codes are as in Table 1. A support interval is
defined as the range of the parameter value that results in less than a two-unit difference in AIC.. It is roughly equivalent to a 95%
support limit defined using a likelihood ratio test (Hilborn and Mangel 1997). The parameter ¢, is the error variance
proportionality, MaxRG is the estimated maximum radial growth (PotG in Eq. 1), C and D control the shape of the function
describing the response of a target tree to variation in NCI (Eq. 5), o and P estimate the effect of neighbor tree size and distance
(Eq. 6), y estimates the effect of target tree size (Eq. 7), and 0 and o are from Eq. 2: § describes the dbh at which MaxRG occurs; ¢
determines the breadth of the function. Finally, X, and X, are from Eq. 3 or 4 depending on whether the best model included the
Gaussian or the logistic equation: X, describes the size at which maximum potential growth is estimated to occur, and X, controls
the breadth of the function (i.e., the variance of the normal distribution).

The model with the lowest AIC, is the most parsimo-
nious model and is considered the best. The absolute
magnitude of the differences in AIC. between alternate
models (AAIC.) provides an objective index of the
strength of empirical support for the competing models
(Burnham and Anderson 2002). Most studies using BMI
typically stop here (e.g., Canham et al. 2006) and base
both scientific inferences and subsequent simulation on
the selected best model. However, AIC, can also be used
to assess the relative strength of evidence for competing
models, using Akaike weights (®;) derived from the
differences between AIC, values:

e—O.SA,

=
Z 005
r=1
where A; is AAIC, between the best model and the ith
model and R is the number of models used in the
analysis (Burnham and Anderson 2002). The Akaike
weight of model i can be interpreted as the expected
probability of that model being selected best if one were
to take repeated independent samples from the same
population. If ®pes, > 0.9, there is little basis for
including alternate models and the best model is
typically used (BMI). If ®pee < 0.9, however, then no
single model is clearly superior, and there may be
benefits to model averaging using Akaike weights. In
particular, model averaged estimates often have reduced
bias compared to the best model (Burnham and
Anderson 2002). For nonlinear models, as in our case,
model averaged growth is calculated as follows:

©;

(8)

R
E(y) = Z oE(y;) )

where E(y) is the model averaged estimate of the
predicted expected response variable E(y;) (i.e., growth)
across models for a given value of the predictor variable
(Burnham and Anderson 2002).

Prediction using multi-model inference: a simplified
application—To illustrate the utility of MMI in forest
simulations designed to help improve predictions for
forest managers, we present an example predicting
growth of Q. rubra and F. americana as a function of
target tree size and conditions at three sites along one
resource gradient.

RESULTS
Model evaluation

All of the models produced unbiased estimates of
growth (i.e., slopes of predicted vs. observed growth
were all ~1.0, Table 2). Model R? for the best models for
each species ranged from 0.19 to 0.50 (Table 2). The
variance in predicted growth increased as a linear
function of predicted growth for all of the best models,
with slopes ranging from 0.42 to 1.1 (Table 2) and
intercepts of 0 for all species except B. allegheniensis
(data not shown). Factors such as pests, pathogens,
physical damage, and the residual effects of suppression
and release (Wright et al. 2000, Jones and Thomas 2004)
all increasingly contribute to variation in growth as
growth increases, making such heteroscedasticity com-
mon in studies of tree growth (Pacala et al. 1994,



October 2006 TREE COMPETITION ALONG GRADIENTS 1885
TaBLE 2. Extended.
Size effect Axis 1 Axis 3
Target tree
size, y 3 c Xo X Xo Xy

—0.94 12.8 1.43
(—0.95, —0.93) (12.8, 12.93) (1.24, 1.44)
—0.64 80.37 10.83
(—0.649, —0.630) (27.33, 81.17) (10.72, 20)
—1.60 24.24 1.02 0.38 0.99
(—1.62, —1.59) (23.27, 24.49) (1.01, 1.03) (0.37, 0.39) (0.95, 1.0)

12.7 1.14

(12.7, 13.21) (1.12, 1.24)
—1.14 98.44 2.95 1.7 2.92
(—1.15, —1.13) (97.46, 99.43) (2.92, 2.98) (1.68, 1.7) (2.86, 2.95)
-1.79 81.01 491 0.95 1.27 0.10 1.76
(-1.81, —=1.77) (80.20, 95.60) (4.52, 4.96) (0.94, 0.96) (1.26, 1.3) (0.07, 0.10) (1.71, 1.78)
—1.09 26.17 12.03 0.93 0.65 0.84 2.66
(—1.10, =1.77) (25.91, 82) (1.92, 12.15) (0.92, 0.94) (0.58, 0.66) (0.83, 0.84) (2.47, 2.68)
—1.67 12.83 1.62 0.45 0.75
(—1.69, —1.65) (12.7, 12.96) (1.55, 1.63) (0.44, 0.45) (0.74, 0.76)

Canham et al. 2004, 2006). One factor that limits the
predictive power of our current study is plot size. There
was evidence that the plot size is too small to estimate
the full effects of neighboring trees for three of the eight
species (based on predicted values of B ~ 0; Table 2).
Canham et al. (2006) used the same sized plots and
found similar limitations for some of their species. Other
studies that have used the same approach (e.g., Canham
et al. 2004, Uriarte et al. 20044, b) have used larger plots
and found the effective neighborhood radius varied
among species from 3.2 to 19.8 m.

Effects of target tree size on potential growth

Predicted maximum growth (maxRG, Table 3) was
positively correlated with shade tolerance ranking
(Spearman’s rs = 0.74, P = 0.025, n = 8). There was a

striking difference between the magnitudes of predicted
growth of the three most shade intolerant species and
the more shade-tolerant species as a function of target
tree dbh in the best models (Fig. 1). This pattern was
also remarkably consistent across all models in the
prediction set (predicted growth varied <2% for seven of
the eight species). The greatest disparity was among the
models for F. americana, for which predictions varied by
up to 6.7% for 15 cm dbh trees, but decreased to <1% by
40 cm dbh trees (results not shown).

Variation in potential growth of tree species
along environmental gradients
The two axes of the DCA ordination with the highest

coefficients of determination were readily interpretable
as gradients in soil moisture (axis 1) and soil fertility

TasLE 3. List of models included in the prediction set as determined by Xw; > 0.9.
Competition model Axis 1 Axis 3

Species Mpest 2o; N (n) Full Inter. Equiv. None Y L G L G
FAGR 0.404 0.924 6(2) 0.022 0.902 NA NA 0.544 0.031 0.063 0.024 NA
TSCA 0.331 0.917 6 (4) 0.117 0.800 NA NA 0.917 0.031 0.307 NA 0.162
ACSA 0.560 0.901 4(2) 0.833 0.068 NA NA 0.901 0.068 0.781 NA 0.281
BEAL 0.261 0.902 13 (2) 0.135 0.231 0.576 NA 0.370 NA NA 0.231 0.078
ACRU 0.449 0.921 5(2) 0.921 NA NA NA 0.921 0.162 0.051 0.540 0.381
QURU 0.437 0.923 3(3) 0.923 NA NA NA 0.923 0.237 0.686 0.249 0.674
FRAM 0.207 0.916 7(5) 0.721 0.195 NA NA 0.571 NA 0.815 0.400 0.516
PIST 0.747 0.944 4(1) 0.866 0.078 NA NA 0.944 0.060 0.059 NA 0.944

Notes: This set forms the basis for multi-model inference. This table can also be used to determine the relative importance of
several key variables conditioned on the full set of models tested. For example, we can see that A. rubrum is well-behaved in the
sense that species-specific competition, tree size, and axis 3 (fertility) are important in all models that make up the prediction set.
However, there is only weak support that axis 1 (moisture) is important. B. allegheniensis, on the other hand, shows mixed support
for the importance of the different competition models (Z0eq =0.536, Zwjn = 0.231, Ty, =0.135), and tree size and axis 3 have no
effect (2o =0.542 and T = 0.593, respectively). Despite the weak support for the best model (@pes = 0.261), MMI reveals very
strong support that axis 1 has no effect on the growth of B. allegheniensis (o) = 0/0.902). In this way, MMI improves our
understanding of which components of a system we can be more certain about and which we are less certain about and warrant
more study. Parameters with values in boldface text indicate their presence in the best model; N, number of models in the prediction
set; (n), number of models with @ > 0.1; vy, response of target tree to competition as a function of its size; L, logistic model; G,
Gaussian model of variation of tree growth along axis; NA, the effect did not show up in any of the models in the prediction set.
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AIC, best models of each species. Potential growth of the less
shade-tolerant species (open symbols) was generally greater
than potential growth of more shade-tolerant species (solid
symbols) for all sizes of trees. Species codes are in Table 1.

(axis 3; Fig. 2). The species at the low end of axis 1 (e.g.,
A. saccharum, T. canadensis, and Prunus serotina) are
known to reach greatest abundance on mesic sites, while
species at the high end of axis 1 (e.g., Quercus spp. and
P. strobus) are typically found on more xeric sites (Burns
and Honkala 1990). The species at the low end of axis 3
(e.g., F. americana and A. saccharum) are well known for
their occurrence on richer soils (Fowells 1965), whereas
T. canadensis and F. grandifolia are typically found on
more acidic soils with lower base saturation (Kobe et al.
1995, Kobe 1996, Van Breeman et al. 1997).
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for axes 1 and 3. Autecologies of key species (codes identified in
Table 1) indicate that these two axes may represent ecosystem
gradients in soil moisture (axis 1) and soil fertility (axis 3).
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Potential growth of five of the eight species showed a
response to at least one of the ordination axes, F.
americana, Q. rubra on both axes, 4. saccharum on axis
1, and Acer rubrum and P. strobus on axis 3 (Figs. 3 and
4). On axis 1 (the putative moisture gradient), A.
saccharum and F. americana were most abundant at
sites where they reached their predicted optimal growth,
while abundance of Q. rubra was displaced toward the
poorer end of the gradient (i.e., higher axis scores) from
where it was predicted to achieve greatest growth (Fig.
3). On axis 3 (the putative fertility gradient), F.
americana and A. rubrum reached their greatest abun-
dance toward the richer end of the gradient (i.e., lower
axis scores); peak abundances of P. strobus and Q. rubra
were displaced toward the poorer end of the gradient
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models for which the w; > 0.1.

away from the sites where they were predicted to reach
their optimal growth (Fig. 4).

Variation in competitive effects of neighboring species

The parameters A;, o, and B (Eq. 6) estimate the
competitive effects of neighboring species. The param-
eter A, estimates the species-specific relative competitive
strength of neighboring trees independently of their size
or distance from the target tree. Evidence for the effect
of competition from neighbors on growth of target trees
was overwhelming (®pn.x < 0.0005, for the “no
competition” model); however, the strength of evidence
for differences among neighboring species in their
competitive effect on a target species varied among the
target species. The “full” species-specific competition
model was the best model for five of the eight target
species (Table 3). The simpler model that discriminated
between conspecific and interspecific competitors was
most parsimonious for the two most shade-tolerant
species, F. grandifolia and T. canadensis (Table 3). The
equivalent species competition model was the best
competition model only for B. allegheniensis (Table 3).
The parameter o provides a measure of how a target tree
responds to neighbor size averaged across all species of
neighbors (Eq. 5). Estimates for o in the best models
varied from just less than 1 to 2.5 (Table 2). The
sensitivity of target trees to the size of neighboring trees
was positively correlated with shade tolerance rank

(Spearman’s rs = 0.88, P =0.005, n = 8). The parameter
B provides a measure of how the effect of neighboring
trees decreases as a function of distance from a target
tree. The maximum likelihood estimates of  were zero
for three of the species, indicating that the effects of
neighbors did not decline within the 7.3 m radius of the
plot. The three species do not fall into any grouping with
respect to shade tolerance. This suggests that the
effective competitive neighborhoods for these three
species are larger than the plot size. For the remaining
five species, estimates of B ranged from 0.25 to 1.0
(Table 2) and there was no correlation between the
magnitude of B and the shade tolerance rank of those
species (Spearman’s rs = 0.35, P = 1.000).

Variation in competitive responses of target trees

The parameters C, D (Eq. 5), and vy (Eq. 7) estimate
the competitive responses of target trees to crowding.
The effects of target tree size on the response of a tree to
crowding by neighbors is controlled by the parameter y
(Eq. 7); when y < 0, sensitivity to crowding declines as
target tree dbh increases (i.e., smaller trees suffer a
greater reduction in growth from a given level of
crowding than do larger trees). The best models for
seven of the eight species included vy, with y < 0 in all
seven species (Table 2). There was a positive correlation
between the magnitude of y and shade tolerance rank
(Spearman’s rg =0.64, P=0.1, n="7), with more shade-



1888

—=— FAGR MMI —— ACSA
—— BEAL

—=— ACRU

—— QURU
—— FRAM
—— PIST

—=— FAGR
—— TSCA

Average
density of
neighborhood

Average
density of
neighborhood

Fraction of potential growth
(]

P

(]
r

No. neighbors
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number of trees of a given dbh and distance from (a) a 15 cm
dbh target tree and (b) a 40 cm dbh target tree of each species.
The neighborhood consists of a set of trees all of which are 23.2
cm dbh and 4.75 m away. Species are sorted in approximate
inverse shade-tolerance order. With the exception of Acer
saccharum, there is a clear shade-tolerance relationship that is
stronger with the size of the target tree. Also, due to the effect of
v, the more shade tolerant a species is, the less its growth
decreases as a function of target tree size. Species codes are in
Table 1.

tolerant species generally having values of y closer to
zero (Table 3). Support for the importance of vy is
buttressed using MMI, as the one species for which y
was unimportant in the best model (B. allegheniensis)
had some support in the prediction set (Zw, = 0.370,
Table 2), and there was reasonable model selection
uncertainty between this and the best model (®pes; =
0.261 vs. @, = 0.110, AAIC, = 1.70). Moreover, the
value of y in this alternate model (y = —0.820) did not
change the significance of the correlation of shade
tolerance rank (Spearman’s rg = 0.58, P=0.1, n =8).
Growth declined as a simple exponential function of
NCI for six of the eight species (Table 2, parameter D ~
1). The parameter C describes the slope of decrease in
growth as NCI increases. The magnitude of C was
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negatively correlated with shade tolerance ranking
(Spearman’s rg = 0.6, P = 0.1, n = 8). The best models
for F. grandifolia and A. saccharum both predicted D >
1, however, support for D > 1 was decidedly mixed for
F. grandifolia (0 p=, =0.49 vs. ®p_; =0.43). To illustrate
the effect of NCI on predicted growth, we compared the
effect of equivalent neighborhoods on each species (Fig.
5). Fig. 5 shows the response of a 15 cm and 40 cm dbh
target tree to a simplified representation of an “average”
neighborhood in which all neighborhood trees are the
median dbh for the data set and the median distance
away from the target tree (Table 1). Because predictions
of D were consistent for all species except F. grandifolia,
we highlight the MMI inferred growth only for that
species. Sensitivity to crowding varied dramatically
among these species under these “average” conditions;
growth of the more tolerant species declined more
steeply as the neighborhood became denser (Fig. 5). In
this example, the effects of o, B, and vy are held constant.
Thus, variation in response among species is due entirely
to the effect of the parameter C. Fagus grandifolia had
the greatest decline of maximum potential growth,
whether one considers the best model alone or model
averaged predictions (Fig. 5), suggesting that MMI is
unlikely to substantially alter predictions in the relative
effect of NCI on growth among these species.

Analysis of the relative importance of processes using
multi-model inference

The weight of evidence for the best models ranged
from 0.207 (F. americana) to 0.747 (P. strobus) (Table 3)
indicating considerable uncertainty in model selection.
Depending on species, it took three to 13 models before
Ym; > 0.9 (Table 3, data tables in Appendix). We call
this subset of models for each species the “prediction
set.” One simple use of MMI is in improving estimates
of our confidence in inferences based on BMI, by
estimating the relative importance of parameters (or
groups of parameters) among the models in the
prediction set. For example, we can estimate the
importance of the effect of target tree size on sensitivity
to competition (y) by calculating Z, of those models in
which y appears, over the subset of all models included
in the prediction set. Based on this criterion, target tree
size was very important in determining the sensitivity to
competition for five of eight species, was less so for F.
grandifolia and F. americana, and ambivalent for B.
allegheniensis (Table 3). Support for the effect of
variation in site conditions (as inferred from plot scores
along the two ordination axes) also varied among
species. Axis 1 was important to Q. rubra and only
slightly less so to both A. saccharum, and F. americana
(Table 3), whereas axis 3 was important to 4. rubrum, F.
americana, P. strobus, and Q. rubra. The most shade-
tolerant species, F. grandifolia, did not respond to either
axis (Zma; =0.094, Zwaz =0.024; Table 3), and the next
most shade tolerant, 7. canadensis, also probably did
not (Zwa; = 0.338, Xwa; = 0.162; Table 3). Support is
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overwhelming that all species were subject to the
competitive effect of neighbors (Table 3); however, the
manner in which species responded to the identities of
trees in their neighborhood varied. Five species showed
strong support for the model in which neighboring
species had different competitive effects (Table 3). Two
species were sensitive to different competitive effects of
conspecific neighbors vs. interspecific neighbors (Table
3). Only one species, B. allegheniensis, responded to all
neighbors equivalently regardless of species identity, and
support for this was decidedly ambivalent (weq = 0.536,
Table 3).

Prediction using multi-model inference:
a simplified application

Using MMI to predict growth requires incorporating
the effects of all the models with sufficient support based
on Eq. 8, for each species in the prediction set, using Eq.
9. We consider three hypothetical sites each with the same
axis 1 scores, but different axis 3 scores, and illustrate the
differences in predictions of growth using BMI vs. MMI.
Sites were selected to represent environments where F.
americana is most abundant (site A), where Q. rubra is
most abundant (site B), and where both species are fairly
common (site C). All plots have a hypothetical mean
neighborhood (Table 1) and consist of eight 23.2 cm dbh
trees, each of which are 4.75 m away. For simplicity, we
set f=0 and A;=1 for all species.

Because no single model was overwhelmingly best for
any of the eight species (max ® = 0.747; Table 3),
predictive efficacy of the best models is likely weak. Our
MMI analysis showed that the magnitudes of several
important parameters are remarkably consistent among
models (e.g., tree size effect, D, o), thus increasing our
confidence in their effects. Other parameters, however,
varied considerably for at least some species (e.g., axis 1,
axis 3, y) and revealed important areas of uncertainty. In
particular, there was considerable uncertainty in the
effects of axis 3 on potential growth of F. americana and
Q. rubra (Table 3, Fig. 4). The data were ambivalent in
choosing between a logistic and a Gaussian shaped
effect of axis 3 on growth for both species (Table 3). It is
important to note that scientific inference with respect to
axis 3 is consistent whether one uses BMI or MMI: F.
americana is most common where it grows best, and
competition displaces Q. rubra from where it grows best.
Nevertheless, MMI suggests that the different possible
quantitative effects of this axis on growth could be
important, because the magnitude of predicted growth
across the gradient differed considerably among models
in the prediction set (Fig. 4).

The effect of v (i.e., target tree size) on sensitivity to
crowding, in terms of weight of evidence, was consid-
erably more important to Q. rubra (20 = 0.92) than F.
americana (Zo = 0.57). The predicted values of y for Q.
rubra were consistent among alternate models (i.e.,
between —1.698 to —1.876; Appendix, Table AS)
showing a strong decreasing effect of competition on
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trees as they got larger. As might be expected for a
parameter without strong support in the data, the
predicted values of y for F. americana varied consid-
erably among alternate models (—0.5 to —2.0; Appendix,
Table A6). The consistency in the estimates of y for Q.
rubra suggest that predictions of this effect based on
only the best model would not differ much from
prediction based on the entire prediction set. The effect
of y is strongly nonlinear, however, and simulations
using model-averaged predictions of both Q. rubra and
F. americana could vary considerably from those based
only on the best models.

DiscussioN

Variation in potential growth of tree species
along environmental gradients

Our analyses allowed us to explore the relationship
between the fundamental niche of each species as
represented by potential growth (Figs. 3 and 4, heavy
solid lines) and their realized niche as represented by
relative abundance (Figs. 3 and 4, dots) across the
inferred environmental gradients. Both axes showed
clear, but distinct, relationships of shade tolerance
ranking with growth and abundance. Along axis 1
(moisture), the fundamental and realized niches of the
two more shade-tolerant species coincided, but the
realized niche of the less shade-tolerant Q. rubra was
displaced toward the poorer end of the gradient (Fig. 3).
In contrast, only less shade-tolerant species responded to
axis 3 (Fig. 4), and maximum potential growth was at or
near the rich end of the gradient for all four species. All
four species showed varying degrees of displacement of
their realized niches towards the poorer end of the
gradient. The prediction set of models shows similar
qualitative interpretations of these patterns, and our
inference of a relationship between shade tolerance and
patterns of fundamental vs. realized niche displacement
is consistent across all models in the prediction set.
Multi-model inference, however, reveals important
variation among the models in the magnitudes of the
predicted effect of each axis on some species. In
particular, Q. rubra showed considerable variation in
predicted growth along both axes, as did predicted
growth of F. americana and A. rubrum along Axis 3. We
conclude that since several of these key species reach
their peak growth at different points along both
gradients, and because this is consistent across models
in the prediction set, fundamental niche differentiation
sensu Whittaker (1975) plays an important role in
structuring these forests. Nevertheless, there is a
substantial amount of competitive displacement, espe-
cially for less shade-tolerant species.

Variation in competitive effects of neighbors
and competitive responses of target trees

Hubbell’s (2001) neutral model assumes that all
individuals are functionally equivalent competitors,
and works well despite measurable differences among
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Fic. 6. Example of the importance of model averaging on
predicted growth as a function of tree dbh at three points along
axis 3 with two neighborhoods: (a) a rich site (axis 3 =0.0), near
where Fraxinus americana (FRAM) is most abundant (see Fig.
4); (b) an intermediate site (axis 3 = 0.78), where both species
are roughly equally abundant; and (c) at a poorer site (axis 3 =
1.2), where Quercus rubra (QURU) is most abundant. Each
target tree has eight neighbors at 23.2 cm dbh. Axis 1 =1 for all
graphs; B = 0 for all models; therefore, there is no change in
competitive effect with distance; A = 1 for all neighbors.

species and individuals. It is reasonable to expect,
however, that the model performs better in some
communities than others. Taken together, recent papers
using our approach (Canham et al. 2004, 2006, Uriarte
et al. 2004qa, b, and results presented here) suggest that
the assumption of competitive equivalence breaks down
in less diverse forests. Over half of the species examined
in tropical forests of Central America responded to
conspecific vs. interspecific identities of neighboring tree
species equivalently (Uriarte et al. 2004b). In the less
diverse tropical forests of Puerto Rico, and temperate
forests of North America, greater than 95% of the
species examined responded differently to conspecific vs.
interspecific neighbors (Canham et al. 2004, 2006,
Uriarte et al. 2004a). These studies suggest that the
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breakdown of the assumption of competitive equiva-
lence occurs at a fairly high level of diversity, since the
tropical rainforest species in Puerto Rico forests showed
similar degrees of sensitivity to the identity of neighbors
as was observed at the temperate forest sites.

Comparisons to forests of northern New England

Canham et al (2006) used similar methods to explore
competitive interactions among tree species of northern
New England (Vermont and New Hampshire), basing
inference solely on the best model (BMI). Both that
study and the results of our analyses from southern New
England were consistent in concluding that maximum
relative abundance of shade intolerant species tended to
be displaced from sites where predicted growth was
greatest, whereas shade-tolerant species showed little if
any displacement. More specifically, the four species in
our analysis that responded to axis 3 (Fig. 4, the putative
fertility gradient) respond to the fertility axis in the same
way in Vermont and New Hampshire forests (Fig. 3 in
Canham et al. 2000).

Consistency between the two studies in results for
both the competitive response of target trees to
neighbors (C, v) and the competitive effects of neighbors
(o, B) were mixed. The magnitudes of two of the four
parameters (o, y) in the two studies were significantly
correlated for the eight species in common (o, Spear-
man’s rg = 0.81, P < 0.025, n = 8; vy, Spearman’s rg =
0.726, P < 0.03, n=_8), but were not correlated for § and
C. The lack of correspondence of B is not surprising
considering the limitations of plot size. Nor are the
inconsistencies in the estimates of C between the two
studies particularly surprising, since the absolute value
of C reflects scaling of the effects of neighbors by other
parameters. However, the consistency in the predicted
magnitudes of o and y on target tree growth reveals a
remarkable consistency across a broad north-south
gradient in the scaling of the effect of neighboring tree
size on their competitive effect, and in variation in the
sensitivity of target trees to crowding as a function of
their size.

Prediction using multi-model inference

There were clear differences in the predictions of the
best model vs. the averaged model for both target
species at all three sites. The differences were sufficient
to have profound impacts on the results of a simulation
model (Fig. 6). At site A, both BMI and MMI predicted
that the growth of smaller trees decreased dramatically,
as we would expect given the results for y. BMI predicts
much greater growth of F. americana than Q. rubra at all
sizes at this site, whereas MMI suggests that they
converge (that is, given these neighborhood conditions).
At the intermediate (site B) and poor (site C) sites, the
differences between the best model predictions and
model averaged predictions were more dramatic (Fig.
6b, c). At the intermediate site (B), the best model for F.
americana underpredicted growth relative to model
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averaged predictions. These results demonstrate that
both the magnitudes and directions of the differences
between the predictions of the best models and averaged
models can change dramatically along a resource
gradient, even in a relatively simple neighborhood. In
all cases, model averaging resulted in smaller differences
in predicted growth between these two species than
predictions using only the best model. The best model
predicted distinctly higher growth at the rich site for F.
americana and for Q. rubra at the poor site, and thus
seems to perform best at those sites where one species
was clearly more abundant. Our results suggest that
using MMI may be most important at sites where
species are more equal in abundance (Fig. 6b).

BMI selects the model that best explains the observed
data. No other model, or group of models, from the set
of models used in the analysis does a better job of
explaining that data. Therefore, we cannot expect model
averaged predictions to do a better job in predicting the
observed data. In fact, the reverse is actually true. MMI
is a way of hedging bets when model selection
uncertainty is high (i.e., when the differences between
AICs of competing models are less than between 2 to 7
in most cases). Repeated samples drawn from a
population would be expected to select different models
as the best model roughly in proportion to their weights.
Thus, our best estimates for the population from which
the observed data were drawn may be given by MMI,
and predictions of the behavior of the population may
be more accurate using model averaging.

Modern mixed-species uneven-aged silviculture
presents a host of new scientific challenges that require
us to improve our understanding of how tree growth and
survival vary among species across a wide range of stand
structure, community composition, and environmental
conditions. While BMI and MMI showed qualitatively
consistent results for all species in our study, MMI
revealed considerable uncertainties in the predicted
magnitude of growth, especially away from sites where
the species were expected to grow best. We have shown
using a very simple example that predictions based on
model averaging vs. the best models can vary dramat-
ically as site and neighborhood conditions change. Thus,
MMI augments the information in BMI and may lead to
improved predictions of variation in the growth of trees
as a function of site characteristics and local neighbor-
hoods. In the face of imperfect data (and models), our
results suggest that recommendations for forest manage-
ment could benefit from judicious use of MMI.
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