
Ecological Applications, 16(5), 2006, pp. 1880–1892
� 2006 by the Ecological Society of America

MULTI-MODEL ANALYSIS OF TREE COMPETITION ALONG
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Abstract. Robust predictions of competitive interactions among canopy trees and
variation in tree growth along environmental gradients represent key challenges for the
management of mixed-species, uneven-aged forests. We analyzed the effects of competition on
tree growth along environmental gradients for eight of the most common tree species in
southern New England and southeastern New York using forest inventory and analysis (FIA)
data, information theoretic decision criteria, and multi-model inference to evaluate models.
The suite of models estimated growth of individual trees as a species-specific function of
average potential diameter growth, tree diameter at breast height, local environmental
conditions, and crowding by neighboring trees. We used ordination based on the relative basal
area of species to generate a measure of site conditions in each plot. Two ordination axes were
consistent with variation in species abundance along moisture and fertility gradients.
Estimated potential growth varied along at least one of these axes for six of the eight species;
peak relative abundance of less shade-tolerant species was in all cases displaced away from
sites where they showed maximum potential growth. Our crowding functions estimate the
strength of competitive effects of neighbors; only one species showed support for the
hypothesis that all species of competitors have equivalent effects on growth. The relative
weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for
Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a
more robust platform for prediction than that based solely on the best model. We show that
predictions based on the selected best models dramatically overestimated differences between
species relative to predictions based on the averaged set of models.

Key words: competition; environmental gradients; forest management; information theory; multi-model
inference; neighborhood analysis; neighborhood competition index; neutral theory; niche, sustainable forest
management.

INTRODUCTION

Growth and yield models and the enormous body of

empirical research on which they were based provided a

predictive foundation for even-aged forest management.

The recent shift to partial harvesting and all-aged

management on both public and private land in the

northeastern United States (USDA Forest Service 2001)

reflects a recognition that sustainable forestry requires

managing forests to optimize a wide range of ecosystem

characteristics (Kohm and Franklin 1997, Burton et al.

2003) and social values (Kimmins 1995), not simply

timber yield. The shift away from even-aged manage-

ment, however, presents a host of new scientific

challenges. The spatial patterns of partial harvests have

important implications for understory light levels for

regeneration (e.g., Canham et al. 1994, Beaudet et al.

2002), including the potential for invasion by exotic

species (Knapp and Canham 2000). The spatial distri-

bution of seed trees has strong effects on the distribution

and abundance of regeneration, particularly given the

limited dispersal distances of most northeastern tree

species (Ribbens et al. 1994, Clark et al. 1999, Greene et

al. 2004). And, perhaps most important from an

economic standpoint, the spatial pattern of harvests

determines the degree of release from competition with

potentially dramatic effects on growth and survival of

residual trees (e.g., Wimberly and Bare 1996, Coates et

al. 2003, Canham et al. 2004, 2006). Predicting stand

development and yield following partial harvesting

requires consideration of an almost infinite variety of

spatial configurations of the level of removal of different

species and tree sizes within a stand.

These new challenges of managing and maintaining

structurally complex stands require a shift in emphasis

away from more site-specific, empirical models that

emphasize prediction, to more mechanistic, spatially

explicit models that incorporate the consequences of

varying environments and dynamic spatial structure

within stands. A number of recent analyses of models

used in forest management have highlighted the need for

hybrid approaches that balance the predictive power of

empirical models with the generality of process models.

(e.g., Pinkard and Battaglia 2001, Peng et al. 2002,
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Milner et al. 2003, Robinson and Ek 2003, Seidl et al.

2005, Canham et al. 2006).

We follow an approach recently developed by

Canham et al. (2006) that uses simple distance-depend-

ent neighborhood competition models, parameterized

using field data, that describe the responses of individual

trees to variation in both local neighborhood competi-

tion and site environmental conditions. More generally,

the models address several important theoretical ques-

tions concerning the role of competition among adult

trees in structuring forest communities. These include

insights into whether and which species of trees are

functionally equivalent competitors; evidence for the

displacement of realized niches as a result of competi-

tion; and, quantitative estimates of the strength of

interspecific competition between pairs of species.

Traditional modeling approaches (including Canham

et al. 2006) estimate parameters for a set of candidate

models specified independently of the data analysis.

Inference is then normally based only on the parameter

estimates and structure of the best model (i.e., best-

model inference or BMI). This is appropriate when

comparisons between alternate models are used as a

form of hypothesis testing (Johnson and Omland 2004).

When prediction is an explicit goal of a model (as in

many forest management applications), however, BMI

may be misleading if there are alternate models with

reasonable support in the data (Burnham and Anderson

2002). Information theory provides a basis for evaluat-

ing the weight of evidence in support of alternate models

relative to the ‘‘best’’ model (Burnham and Anderson

2002) that hypothesis testing methods do not. This

multi-model inference (MMI) provides an alternative

framework, in which inference is based on the relative

merits of the subset of all the models tested which have

sufficient support in the data as measured by their

weight of evidence (Burnham and Anderson 2002).

MMI is particularly important if the predictions vary

markedly among the set of alternate models (Burnham

and Anderson 2002). Failure to incorporate information

from alternate models may represent an unappreciated

form of prediction error in ecological models. In this

paper, we expand on the approach of Canham et al.

(2006) and explore the use of multi-model inference for

predicting the effects of neighborhood competition on

tree growth along environmental gradients in southern

New England forests.

METHODS

Our method analyzes tree growth in mapped stands

(Canham et al. 2004, 2006, Uriarte et al. 2004a, b) to

simultaneously estimate (1) average potential growth on

an optimal site in the absence of competition as a

function of target tree size, (2) variation in potential

growth along environmental gradients, and (3) the

magnitude of the competitive effects of neighboring

trees on target tree growth as a function of the species,

size, and distance to neighboring trees. Full details of the

approach we use can be found in Canham et al. (2006).

We review the most salient aspects here. All model

functions have been designed to be incorporated into the

forest dynamics model SORTIE-ND, which is a plat-

form for spatially explicit, individual tree modeling of

forest dynamics, based on the earlier SORTIE model

(Pacala et al. 1996; SORTIE-ND, available online).3

Study area and data

Our study area covers western and central Connect-

icut, western and central Massachusetts, and south-

eastern New York, roughly centered on Great Mountain

Forest (GMF) in northwestern Connecticut, where

SORTIE was first parameterized (Pacala et al. 1996).

There are a variety of forest types in this region ranging

from oak-dominated forests on drier and more southern

and eastern sites, to northern hardwood forests on more

mesic and northern sites. We analyze growth of adult

trees of eight of the most common species across the

region: American beech (Fagus grandifolia Ehrh.), east-

ern hemlock (Tsuga canadensis L.), sugar maple (Acer

saccharum Marsh.), yellow birch (Betula allegheniensis

Britton), red maple (A. rubrum L.), northern red oak

(Quercus rubra L.), white ash (Fraxinus americana L.),

and white pine (Pinus strobus L.) (Table 1, listed in rank

order of shade tolerance; Kobe et al. 1995).

Our analyses make use of data on tree growth

collected by the USDA Forest Service forest inventory

and analysis (FIA) program. The FIA data sets

comprise a random sample, stratified by land cover,

with approximately one plot per 6000 acres (2428 ha) of

forestland. Of the 597 FIA plots in our study region, we

used the 420 plots which had not been logged during the

census interval. Plots used in our analysis had growth

data from censuses taken between 1978 and 1984 and

between 1992 and 1998, at intervals of 12–14 years.

Specific field methods vary slightly among the three

states, but are easily reconciled for our analysis. The

earlier sampling protocols in all three states used 16.1 or

14.7 m radius circular plots in which all trees .12.5 cm

diameter at breast height (dbh) were mapped and

measured. The most recent New York census kept the

original plot and also sampled all trees .12.5 cm dbh.

The more recent censuses in Massachusetts and Con-

necticut, however, used a slightly modified plot struc-

ture, where each plot consists of four distinct subplots

that are ;7.3 m radius. One subplot is embedded in the

center of the older plot (USDA 1998). The change in

sampling protocol allows calculation of growth for trees

only within the central 7.3 m radius subplot. The

original plot gives the configuration of the competitive

neighborhoods as they existed at the time of the earlier

census, (i.e., the spatial locations, species, and dbh of all

trees) within at least a 7.3 m radius around each tree in

the remeasured subplot. Based on studies in other

3 hwww.sortie-nd.orgi
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systems (Canham et al. 2004, Uriarte et al. 2004a, b), the

7.3 m radius is sufficient to capture the bulk of the

effects of neighboring trees. There was ample variation

among plots in the numbers of neighboring trees and

their spatial configurations and species mixtures to allow

us to estimate growth across a wide range of competitive

conditions (Table 1).

Characterizing environmental variation among plots

FIA field protocols called for direct site assessment at

the time of the surveys, but the data were too subjective

and inconsistent to be of use in this analysis. Thus, we

used ordination of plots based on the relative basal area

among species within plots to generate an indirect

measure of site conditions in each plot. Using relative

basal area minimizes the influence of overly large trees

or many small ones. Detrended correspondence analysis

(DCA; Hill and Gauch 1980) and nonmetric multi-

dimensional scaling (NMS; Kruskall 1964, Mather 1976)

are both commonly used to ordinate forest community

data (McCune and Grace 2002, McGarigal et al. 2000,

Gotelli and Ellison 2004). We tried both methods using

the implementations in PC-Ord version 4.28 (McCune

and Mefford 1999) with the most recent census data for

the full set of 597 plots to further minimize the potential

for outliers to influence the results. The full data set had

sufficient numbers of 15 species that were common

enough to be used in the ordination (.350 trees and

present in .7.5% of the 597 plots).

Our basic criterion for determining the usefulness of

the ordination was whether the axis scores of the species

centroids were interpretable as environmental gradients

given knowledge of the autecologies of the major tree

species in the region (McGarigal et al. 2000). For the

NMS ordination, we used the Sorensen distance

measure and followed the procedure outlined by

McCune and Grace (2002:131–136). The recommended

data reduction was to three dimensions and the stress

was 21.1, indicating unreliable results (Kruskall 1964,

Gotelli and Ellison 2004, McCune and Grace 2002).

Moreover, the NMS ordination did not reveal inter-

pretable patterns of species distribution along the axes.

The two axes of the DCA ordination with the highest

coefficients of determination, in contrast, appeared to

represent gradients in soil moisture (axis 1) and soil

fertility (axis 3), so these two axes were used for our

analyses.

A spatially explicit analysis of tree growth

The analyses provide empirical estimates of parame-

ters that quantify the relative effects of tree size, site

conditions and the sum of all competitive effects of

neighboring trees on the growth of a target tree species.

Growth of each of the eight species of trees was analyzed

separately. The basic model has four components

(Canham et al. 2006): (1) peak average potential

diameter growth in the absence of competition (PotG,

in mm/yr), and three sets of scalar modifiers ranging

from 0 to 1 that quantify the effects on average potential

growth of (2) initial target tree size (dbh, in cm), (3) local

environmental (site) conditions, as measured by ordi-

nation axis scores, and (4) crowding by neighboring

trees,

growth ¼ PotG 3 size effect 3 site effect 3 crowding effect

ð1Þ

where growth is measured in mm/yr.

Tree size effect.—We estimate the effect of the size of

the target tree on potential growth using a lognormal

function:

size effect ¼ e�1=2 lnðdbh=dÞ
r

� �2

ð2Þ

where d is the dbh (of the target tree) at which PotG

occurs, and r determines the breadth of the function.

The function can be monotonically increasing (i.e., when

d is very large), decreasing (i.e., when d is very small), or

have a single ‘‘hump’’ and a skew to the left when d is

within the normal range of dbh (Canham et al. 2004).

Site effect.—Ordination results identified two major

axes of variation in relative abundance of species that

could be readily interpreted as variation in site

conditions among plots. We used two alternative

TABLE 1. Summary statistics of forest inventory and analysis (FIA) plots in the study area.

Species Code

No.
target
trees

No.
plots

dbh
Neighbors/
target tree

Conspecific
(%)

Mean distance (m)

Median Max. Min. Max. Mean All Conspecific Interspecific

Fagus grandifolia FAGR 100 43 20.6 62.7 0 18 8.82 39.6 4.78 4.57 4.90
Tsuga canadensis TSCA 312 78 23.2 56.4 0 23 11.08 57.5 4.86 4.83 4.90
Acer saccharum ACSA 169 79 24.7 98.6 0 16 7.85 32.5 4.86 4.68 4.98
Betula alleghaniensis BEAL 69 41 20.8 38.1 1 20 8.70 15.6 4.77 4.77 4.76
Acer rubrum ACRU 590 197 21.7 104.9 0 24 8.54 48.6 4.67 4.37 4.96
Quercus rubra QURU 260 103 24.4 55.6 1 18 7.85 49.0 4.78 4.48 5.00
Fraxinus americana FRAM 100 58 21.9 52.6 2 17 7.46 37.8 4.94 4.82 4.98
Pinus strobus PIST 239 82 26.7 76.2 0 19 8.98 57.4 4.72 4.65 4.82

Weighted averages 23.2 8.82 4.75
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functions to estimate the relationship between growth of

trees in a plot and variation in environmental conditions

as reflected in the ordination scores (Eqs. 3 and 4). The

following equation produces a Gaussian distribution

along an environmental axis, but can also produce

sigmoidal, monotonic curves:

site effect ¼ e�1=2 axis1i � X10

X1b

� �2

3 e�1=2 axis2i � X20

X2b

� �2

ð3Þ

where axis1i and axis2i are the observed ordination axis

scores for plot i, X10 and X20 are the estimated axis 1

and 2 scores, respectively, at which maximum potential

growth occurs, and X1b and X2b are estimated

parameters that control the breadth of the function

(i.e., the variance of the Gaussian distribution). Note

that axes 1 and 2 are abstractions and can refer to any

two axes of environmental information, whether they

are from ordinations of data or any other approach to

indexing or scoring environmental variables. As an

alternate model, we test the bivariate logistic equation,

which produces a non-sigmoidal monotonic curve:

site effect ¼ 1þ axis1i

X10

� ��X1b

3 1þ axis2i

X20

� ��X2b

ð4Þ

where all of the terms are as defined for Eq. 3, except

that the original axis scores have been rescaled to be

greater than zero by adding the minimum axis score plus

0.1 to each value. For both Eqs. 3 and 4, we also tested

univariate functions in which terms for one of the two

axes were dropped from the analysis if initial results

indicated that there was no response of a target species

to that axis.

Competition.—We assume that growth declines mo-

notonically as a function of a neighborhood competition

index (NCI):

competition ¼ e�C�NCID

: ð5Þ

If D ¼ 1, this is a traditional negative exponential

function. If D . 1, the function is sigmoidal, with an

initially slow rate of decline that steepens as NCI

increases. NCI specifies the net competitive effect of all

neighbors on the target tree as a function of species (ki),
size (a), and distance (b) to neighbor trees (Canham et

al. 2004, 2006):

NCI ¼
Xs

i¼1

Xn

j¼1

ki
ðdbhijÞa

ðdistanceijÞb
: ð6Þ

The species-specific competition index (ki) ranges from 0

to 1 and allows for differences among species in their

competitive effect on the target tree. To facilitate

comparisons of ki across different species of target trees,

the values for each species or group of competitors are

rescaled as a fraction of the highest ki. As in Canham et

al. (2006), we evaluated three alternate sets of competi-

tion models with different groupings of neighbors. The

‘‘full’’ model used separate ki for each species of

competitor for which there were greater than 20

neighbors (summed across all target trees) in the 420

plots. All other neighboring species were pooled into an

‘‘other species’’ category. We also specified an ‘‘intra-

specific vs. interspecific’’ model that estimated separate

ki for intraspecific competitors and interspecific com-

petitors, and an ‘‘equivalent competitors’’ model in

which all species of competitors had equivalent effects

(i.e., ki ¼ 1 for all neighbors).

We also tested whether a given level of crowding had a

greater or lesser effect as a function of the size of the

target tree by allowing the exponential decay coefficient

(C ) in Eq. 5 to vary as a function of target tree size

(dbht) (Canham et al. 2004, 2006):

C ¼ C 0 3 dbhc
t : ð7Þ

If c , 0, then sensitivity to crowding declines as target

tree dbh increases (i.e., smaller trees suffer a greater

reduction in growth from a given level of crowding than

do larger trees). This effect is independent of the

underlying effect of target tree size on potential growth

in the absence of competition (Eq. 2). The crowding

function distinguishes between the competitive ‘‘effects’’

of neighbors (ki, a, and b in Eq. 6) and the competitive

‘‘response’’ of the target plant (C and D in Eq. 5, and c
in Eq. 7) (Goldberg 1990, Goldberg and Landa 1991).

Analytical approach

Parameter estimation and model evaluation.—We use

simulated annealing (a global optimization procedure,

Goffe et al. 1994) to estimate the maximum likelihood

parameters and support intervals for all terms in the

models. The analyses were done using software written

specifically for this study using Delphi for Windows

(Version 6, Borland Software Corporation, Cupertino,

California, USA). As in many of the earlier studies (e.g.,

Canham et al. 2004, 2006, Uriarte et al. 2004a) an

assumption of normally distributed residuals with the

variance proportional to the mean was appropriate for

the data. This was incorporated into the analysis by

estimating an additional parameter to determine the

scaling of the variance to the mean (e.g., Pacala et al.

1994). We compared models using the Akaike informa-

tion criterion corrected for small sample size (AICc;

Burnham and Anderson 2002). Goodness of fit of the

models was evaluated using R2 (defined as 1 � SSE/SST)

and the slope of the regression of observed vs. predicted

(as a measure of bias).

Multi-model inference.—Together, Eqs. 2–7 comprise

the complete model described by Eq. 1. Alternate

models are formed in two ways: (1) by using Eqs. 3

and 4, which represent two different (i.e., non-nested)

possible theoretical models of growth along an environ-

mental gradient, and (2) by forming nested models by

dropping selected components or parameters for which

there is at most a weak response of the target tree as

suggested by predicted values using the complete model.
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The model with the lowest AICc is the most parsimo-

nious model and is considered the best. The absolute

magnitude of the differences in AICc between alternate

models (DAICc) provides an objective index of the

strength of empirical support for the competing models
(Burnham and Anderson 2002). Most studies using BMI

typically stop here (e.g., Canham et al. 2006) and base

both scientific inferences and subsequent simulation on

the selected best model. However, AICc can also be used

to assess the relative strength of evidence for competing

models, using Akaike weights (xi) derived from the

differences between AICc values:

xi ¼
e�0:5Di

XR

r¼1

e�0:5Dr

ð8Þ

where Di is DAICc between the best model and the ith

model and R is the number of models used in the
analysis (Burnham and Anderson 2002). The Akaike

weight of model i can be interpreted as the expected

probability of that model being selected best if one were

to take repeated independent samples from the same

population. If xbest � 0.9, there is little basis for

including alternate models and the best model is
typically used (BMI). If xbest , 0.9, however, then no

single model is clearly superior, and there may be

benefits to model averaging using Akaike weights. In

particular, model averaged estimates often have reduced

bias compared to the best model (Burnham and

Anderson 2002). For nonlinear models, as in our case,

model averaged growth is calculated as follows:

EðŷÞ ¼
XR

i¼1

xiEðyiÞ ð9Þ

where E(ŷ) is the model averaged estimate of the

predicted expected response variable E(ŷi) (i.e., growth)
across models for a given value of the predictor variable

(Burnham and Anderson 2002).

Prediction using multi-model inference: a simplified

application.—To illustrate the utility of MMI in forest

simulations designed to help improve predictions for

forest managers, we present an example predicting

growth of Q. rubra and F. americana as a function of

target tree size and conditions at three sites along one

resource gradient.

RESULTS

Model evaluation

All of the models produced unbiased estimates of

growth (i.e., slopes of predicted vs. observed growth

were all ;1.0, Table 2). Model R2 for the best models for

each species ranged from 0.19 to 0.50 (Table 2). The

variance in predicted growth increased as a linear

function of predicted growth for all of the best models,

with slopes ranging from 0.42 to 1.1 (Table 2) and

intercepts of 0 for all species except B. allegheniensis

(data not shown). Factors such as pests, pathogens,

physical damage, and the residual effects of suppression

and release (Wright et al. 2000, Jones and Thomas 2004)

all increasingly contribute to variation in growth as

growth increases, making such heteroscedasticity com-

mon in studies of tree growth (Pacala et al. 1994,

TABLE 2. Parameter values with support intervals (in parentheses) for the AICc selected best model for each species.

Species

Best model

e1 MaxRG

NCI scaling parameters
Neighbor
size, a

Neighbor
distance, bSlope R2 Comp. C D

FAGR 0.975 0.342 inter. 0.59 5.15 35.43 1.48 0.91 0.005
(0.57, 0.60) (4.93, 5.19) (34.93, 35.93) (1.44, 1.50) (0.9, 1.02) (0, 0.17)

TSCA 1.000 0.397 inter. 0.55 5.62 14.89 1.18 0.25
(0.54, 0.57) (5.56, 5.73) (14.38, 15.38) (1.17, 1.27) (0.24, 0.28)

ACSA 0.979 0.190 full 0.85 3.89 453.45 1.77 1.35 0.72
(0.84, 0.86) (3.86, 3.93) (448.9, 457.9) (1.75, 1.79) (1.34, 1.37) (0.72, 0.73)

BEAL 1.019 0.364 equi. 0.52 5.82 2.33 0.94 1.00
(0.50, 0.53) (5.76, 6.0) (1.83, 2.83) (0.93, 1.0) (0.99, 1.09)

ACRU 0.991 0.191 full 1.06 5.06 47.54 1.49 0.33
(1.05, 1.07) (5.01, 5.11) (47.03, 48.03) (1.48, 1.52) (0.325, 0.331)

QURU 0.996 0.498 full 0.42 7.27 332.44 1.40 0.00
(0.41, 0.43) (7.20, 7.34) (329.1, 335.8) (1.39, 1.41) (0.00, 0.002)

FRAM 0.983 0.353 full 0.83 8.54 90.32 2.49 0.00
(0.81, 0.84) (8.37, 8.63) (89.42, 91.22) (2.44, 2.52) (0.00, 0.002)

PIST 0.991 0.382 full 1.09 11.04 636.96 1.94 0.47
(1.09, 1.15) (10.93, 11.15) (624.2, 643.3) (1.93, 1.96) (0.44, 0.47)

Notes: Species are listed in approximate decreasing order of shade tolerance. Species codes are as in Table 1. A support interval is
defined as the range of the parameter value that results in less than a two-unit difference in AICc. It is roughly equivalent to a 95%
support limit defined using a likelihood ratio test (Hilborn and Mangel 1997). The parameter e1 is the error variance
proportionality, MaxRG is the estimated maximum radial growth (PotG in Eq. 1), C and D control the shape of the function
describing the response of a target tree to variation in NCI (Eq. 5), a and b estimate the effect of neighbor tree size and distance
(Eq. 6), c estimates the effect of target tree size (Eq. 7), and d and r are from Eq. 2: d describes the dbh at which MaxRG occurs; r
determines the breadth of the function. Finally, X0 and Xb are from Eq. 3 or 4 depending on whether the best model included the
Gaussian or the logistic equation: X0 describes the size at which maximum potential growth is estimated to occur, and Xb controls
the breadth of the function (i.e., the variance of the normal distribution).
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Canham et al. 2004, 2006). One factor that limits the

predictive power of our current study is plot size. There

was evidence that the plot size is too small to estimate

the full effects of neighboring trees for three of the eight

species (based on predicted values of b ’ 0; Table 2).

Canham et al. (2006) used the same sized plots and

found similar limitations for some of their species. Other

studies that have used the same approach (e.g., Canham

et al. 2004, Uriarte et al. 2004a, b) have used larger plots

and found the effective neighborhood radius varied

among species from 3.2 to 19.8 m.

Effects of target tree size on potential growth

Predicted maximum growth (maxRG, Table 3) was

positively correlated with shade tolerance ranking

(Spearman’s rS ¼ 0.74, P ¼ 0.025, n ¼ 8). There was a

striking difference between the magnitudes of predicted

growth of the three most shade intolerant species and

the more shade-tolerant species as a function of target

tree dbh in the best models (Fig. 1). This pattern was

also remarkably consistent across all models in the

prediction set (predicted growth varied ,2% for seven of

the eight species). The greatest disparity was among the

models for F. americana, for which predictions varied by

up to 6.7% for 15 cm dbh trees, but decreased to ,1% by

40 cm dbh trees (results not shown).

Variation in potential growth of tree species

along environmental gradients

The two axes of the DCA ordination with the highest

coefficients of determination were readily interpretable

as gradients in soil moisture (axis 1) and soil fertility

TABLE 3. List of models included in the prediction set as determined by Rxi . 0.9.

Species xbest Rxi N (n)

Competition model

c

Axis 1 Axis 3

Full Inter. Equiv. None L G L G

FAGR 0.404 0.924 6 (2) 0.022 0.902 NA NA 0.544 0.031 0.063 0.024 NA

TSCA 0.331 0.917 6 (4) 0.117 0.800 NA NA 0.917 0.031 0.307 NA 0.162
ACSA 0.560 0.901 4 (2) 0.833 0.068 NA NA 0.901 0.068 0.781 NA 0.281
BEAL 0.261 0.902 13 (2) 0.135 0.231 0.576 NA 0.370 NA NA 0.231 0.078
ACRU 0.449 0.921 5 (2) 0.921 NA NA NA 0.921 0.162 0.051 0.540 0.381
QURU 0.437 0.923 3 (3) 0.923 NA NA NA 0.923 0.237 0.686 0.249 0.674
FRAM 0.207 0.916 7 (5) 0.721 0.195 NA NA 0.571 NA 0.815 0.400 0.516
PIST 0.747 0.944 4 (1) 0.866 0.078 NA NA 0.944 0.060 0.059 NA 0.944

Notes: This set forms the basis for multi-model inference. This table can also be used to determine the relative importance of
several key variables conditioned on the full set of models tested. For example, we can see that A. rubrum is well-behaved in the
sense that species-specific competition, tree size, and axis 3 (fertility) are important in all models that make up the prediction set.
However, there is only weak support that axis 1 (moisture) is important. B. allegheniensis, on the other hand, shows mixed support
for the importance of the different competition models (Rxeq¼0.536, Rxint¼0.231, Rxfull¼0.135), and tree size and axis 3 have no
effect (Rx ¼ 0.542 and Rx ¼ 0.593, respectively). Despite the weak support for the best model (xbest ¼ 0.261), MMI reveals very
strong support that axis 1 has no effect on the growth of B. allegheniensis (x(A1) ¼ 0/0.902). In this way, MMI improves our
understanding of which components of a system we can be more certain about and which we are less certain about and warrant
more study. Parameters with values in boldface text indicate their presence in the best model; N, number of models in the prediction
set; (n), number of models with x . 0.1; c, response of target tree to competition as a function of its size; L, logistic model; G,
Gaussian model of variation of tree growth along axis; NA, the effect did not show up in any of the models in the prediction set.

TABLE 2. Extended.

Target tree
size, c

Size effect Axis 1 Axis 3

d r X0 Xb X0 Xb

�0.94 12.8 1.43
(�0.95, �0.93) (12.8, 12.93) (1.24, 1.44)
�0.64 80.37 10.83
(�0.649, �0.630) (27.33, 81.17) (10.72, 20)
�1.60 24.24 1.02 0.38 0.99
(�1.62, �1.59) (23.27, 24.49) (1.01, 1.03) (0.37, 0.39) (0.95, 1.0)

12.7 1.14
(12.7, 13.21) (1.12, 1.24)

�1.14 98.44 2.95 1.7 2.92
(�1.15, �1.13) (97.46, 99.43) (2.92, 2.98) (1.68, 1.7) (2.86, 2.95)
�1.79 81.01 4.91 0.95 1.27 0.10 1.76
(�1.81, �1.77) (80.20, 95.60) (4.52, 4.96) (0.94, 0.96) (1.26, 1.3) (0.07, 0.10) (1.71, 1.78)
�1.09 26.17 12.03 0.93 0.65 0.84 2.66
(�1.10, �1.77) (25.91, 82) (1.92, 12.15) (0.92, 0.94) (0.58, 0.66) (0.83, 0.84) (2.47, 2.68)
�1.67 12.83 1.62 0.45 0.75
(�1.69, �1.65) (12.7, 12.96) (1.55, 1.63) (0.44, 0.45) (0.74, 0.76)
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(axis 3; Fig. 2). The species at the low end of axis 1 (e.g.,

A. saccharum, T. canadensis, and Prunus serotina) are

known to reach greatest abundance on mesic sites, while

species at the high end of axis 1 (e.g., Quercus spp. and

P. strobus) are typically found on more xeric sites (Burns

and Honkala 1990). The species at the low end of axis 3

(e.g., F. americana and A. saccharum) are well known for

their occurrence on richer soils (Fowells 1965), whereas

T. canadensis and F. grandifolia are typically found on

more acidic soils with lower base saturation (Kobe et al.

1995, Kobe 1996, Van Breeman et al. 1997).

Potential growth of five of the eight species showed a

response to at least one of the ordination axes, F.

americana, Q. rubra on both axes, A. saccharum on axis

1, and Acer rubrum and P. strobus on axis 3 (Figs. 3 and

4). On axis 1 (the putative moisture gradient), A.

saccharum and F. americana were most abundant at

sites where they reached their predicted optimal growth,

while abundance of Q. rubra was displaced toward the

poorer end of the gradient (i.e., higher axis scores) from

where it was predicted to achieve greatest growth (Fig.

3). On axis 3 (the putative fertility gradient), F.

americana and A. rubrum reached their greatest abun-

dance toward the richer end of the gradient (i.e., lower

axis scores); peak abundances of P. strobus and Q. rubra

were displaced toward the poorer end of the gradient

FIG. 1. Effect of target tree size on potential growth for the
AICc best models of each species. Potential growth of the less
shade-tolerant species (open symbols) was generally greater
than potential growth of more shade-tolerant species (solid
symbols) for all sizes of trees. Species codes are in Table 1.

FIG. 2. DCA ordination plot scores with species centroids
for axes 1 and 3. Autecologies of key species (codes identified in
Table 1) indicate that these two axes may represent ecosystem
gradients in soil moisture (axis 1) and soil fertility (axis 3).

FIG. 3. Comparison of the fraction of potential growth
(solid lines) with relative basal area in each plot (solid circles) as
a function of DCA axis 1 scores. The heavy line shows the AICc

best model; lighter lines show alternate models for which xi .
0.1.
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away from the sites where they were predicted to reach

their optimal growth (Fig. 4).

Variation in competitive effects of neighboring species

The parameters ki, a, and b (Eq. 6) estimate the

competitive effects of neighboring species. The param-

eter ki estimates the species-specific relative competitive

strength of neighboring trees independently of their size

or distance from the target tree. Evidence for the effect

of competition from neighbors on growth of target trees

was overwhelming (xmax , 0.0005, for the ‘‘no

competition’’ model); however, the strength of evidence

for differences among neighboring species in their

competitive effect on a target species varied among the

target species. The ‘‘full’’ species-specific competition

model was the best model for five of the eight target

species (Table 3). The simpler model that discriminated

between conspecific and interspecific competitors was

most parsimonious for the two most shade-tolerant

species, F. grandifolia and T. canadensis (Table 3). The

equivalent species competition model was the best

competition model only for B. allegheniensis (Table 3).

The parameter a provides a measure of how a target tree

responds to neighbor size averaged across all species of

neighbors (Eq. 5). Estimates for a in the best models

varied from just less than 1 to 2.5 (Table 2). The

sensitivity of target trees to the size of neighboring trees

was positively correlated with shade tolerance rank

(Spearman’s rS¼ 0.88, P¼ 0.005, n¼ 8). The parameter

b provides a measure of how the effect of neighboring

trees decreases as a function of distance from a target

tree. The maximum likelihood estimates of b were zero

for three of the species, indicating that the effects of

neighbors did not decline within the 7.3 m radius of the

plot. The three species do not fall into any grouping with

respect to shade tolerance. This suggests that the

effective competitive neighborhoods for these three

species are larger than the plot size. For the remaining

five species, estimates of b ranged from 0.25 to 1.0

(Table 2) and there was no correlation between the

magnitude of b and the shade tolerance rank of those

species (Spearman’s rS ¼ 0.35, P ¼ 1.000).

Variation in competitive responses of target trees

The parameters C, D (Eq. 5), and c (Eq. 7) estimate

the competitive responses of target trees to crowding.

The effects of target tree size on the response of a tree to

crowding by neighbors is controlled by the parameter c
(Eq. 7); when c , 0, sensitivity to crowding declines as

target tree dbh increases (i.e., smaller trees suffer a

greater reduction in growth from a given level of

crowding than do larger trees). The best models for

seven of the eight species included c, with c , 0 in all

seven species (Table 2). There was a positive correlation

between the magnitude of c and shade tolerance rank

(Spearman’s rS¼ 0.64, P¼ 0.1, n¼ 7), with more shade-

FIG. 4. Comparison of the fraction of maximum potential growth (solid lines) with relative basal area in each plot (solid circles)
as a function of DCA axis 3 scores. The heavy weighted line shows the AICc best model; lighter weighted lines show alternate
models for which the xi . 0.1.
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tolerant species generally having values of c closer to

zero (Table 3). Support for the importance of c is

buttressed using MMI, as the one species for which c
was unimportant in the best model (B. allegheniensis)

had some support in the prediction set (Rxc ¼ 0.370,

Table 2), and there was reasonable model selection

uncertainty between this and the best model (xbest ¼
0.261 vs. xalt ¼ 0.110, DAICc ¼ 1.70). Moreover, the

value of c in this alternate model (c ¼�0.820) did not

change the significance of the correlation of shade

tolerance rank (Spearman’s rS¼ 0.58, P ¼ 0.1, n ¼ 8).

Growth declined as a simple exponential function of

NCI for six of the eight species (Table 2, parameter D ’

1). The parameter C describes the slope of decrease in

growth as NCI increases. The magnitude of C was

negatively correlated with shade tolerance ranking

(Spearman’s rS ¼ 0.6, P ¼ 0.1, n ¼ 8). The best models

for F. grandifolia and A. saccharum both predicted D .

1, however, support for D . 1 was decidedly mixed for

F. grandifolia (xD.1¼ 0.49 vs. xD¼1¼ 0.43). To illustrate

the effect of NCI on predicted growth, we compared the

effect of equivalent neighborhoods on each species (Fig.

5). Fig. 5 shows the response of a 15 cm and 40 cm dbh

target tree to a simplified representation of an ‘‘average’’

neighborhood in which all neighborhood trees are the

median dbh for the data set and the median distance

away from the target tree (Table 1). Because predictions

of D were consistent for all species except F. grandifolia,

we highlight the MMI inferred growth only for that

species. Sensitivity to crowding varied dramatically

among these species under these ‘‘average’’ conditions;

growth of the more tolerant species declined more

steeply as the neighborhood became denser (Fig. 5). In

this example, the effects of a, b, and c are held constant.

Thus, variation in response among species is due entirely

to the effect of the parameter C. Fagus grandifolia had

the greatest decline of maximum potential growth,

whether one considers the best model alone or model

averaged predictions (Fig. 5), suggesting that MMI is

unlikely to substantially alter predictions in the relative

effect of NCI on growth among these species.

Analysis of the relative importance of processes using

multi-model inference

The weight of evidence for the best models ranged

from 0.207 (F. americana) to 0.747 (P. strobus) (Table 3)

indicating considerable uncertainty in model selection.

Depending on species, it took three to 13 models before

Rxi . 0.9 (Table 3, data tables in Appendix). We call

this subset of models for each species the ‘‘prediction

set.’’ One simple use of MMI is in improving estimates

of our confidence in inferences based on BMI, by

estimating the relative importance of parameters (or

groups of parameters) among the models in the

prediction set. For example, we can estimate the

importance of the effect of target tree size on sensitivity

to competition (c) by calculating Rxi of those models in

which c appears, over the subset of all models included

in the prediction set. Based on this criterion, target tree

size was very important in determining the sensitivity to

competition for five of eight species, was less so for F.

grandifolia and F. americana, and ambivalent for B.

allegheniensis (Table 3). Support for the effect of

variation in site conditions (as inferred from plot scores

along the two ordination axes) also varied among

species. Axis 1 was important to Q. rubra and only

slightly less so to both A. saccharum, and F. americana

(Table 3), whereas axis 3 was important to A. rubrum, F.

americana, P. strobus, and Q. rubra. The most shade-

tolerant species, F. grandifolia, did not respond to either

axis (RxA1¼ 0.094, RxA3¼ 0.024; Table 3), and the next

most shade tolerant, T. canadensis, also probably did

not (RxA1 ¼ 0.338, RxA3 ¼ 0.162; Table 3). Support is

FIG. 5. Fraction of potential growth as a function of the
number of trees of a given dbh and distance from (a) a 15 cm
dbh target tree and (b) a 40 cm dbh target tree of each species.
The neighborhood consists of a set of trees all of which are 23.2
cm dbh and 4.75 m away. Species are sorted in approximate
inverse shade-tolerance order. With the exception of Acer
saccharum, there is a clear shade-tolerance relationship that is
stronger with the size of the target tree. Also, due to the effect of
c, the more shade tolerant a species is, the less its growth
decreases as a function of target tree size. Species codes are in
Table 1.
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overwhelming that all species were subject to the

competitive effect of neighbors (Table 3); however, the

manner in which species responded to the identities of

trees in their neighborhood varied. Five species showed

strong support for the model in which neighboring

species had different competitive effects (Table 3). Two

species were sensitive to different competitive effects of

conspecific neighbors vs. interspecific neighbors (Table

3). Only one species, B. allegheniensis, responded to all

neighbors equivalently regardless of species identity, and

support for this was decidedly ambivalent (xeq ¼ 0.536,

Table 3).

Prediction using multi-model inference:

a simplified application

Using MMI to predict growth requires incorporating

the effects of all the models with sufficient support based

on Eq. 8, for each species in the prediction set, using Eq.

9.We consider three hypothetical sites each with the same

axis 1 scores, but different axis 3 scores, and illustrate the

differences in predictions of growth using BMI vs. MMI.

Sites were selected to represent environments where F.

americana is most abundant (site A), where Q. rubra is

most abundant (site B), and where both species are fairly

common (site C). All plots have a hypothetical mean

neighborhood (Table 1) and consist of eight 23.2 cm dbh

trees, each of which are 4.75 m away. For simplicity, we

set b¼ 0 and ki¼ 1 for all species.

Because no single model was overwhelmingly best for

any of the eight species (max x ¼ 0.747; Table 3),

predictive efficacy of the best models is likely weak. Our

MMI analysis showed that the magnitudes of several

important parameters are remarkably consistent among

models (e.g., tree size effect, D, a), thus increasing our

confidence in their effects. Other parameters, however,

varied considerably for at least some species (e.g., axis 1,

axis 3, c) and revealed important areas of uncertainty. In

particular, there was considerable uncertainty in the

effects of axis 3 on potential growth of F. americana and

Q. rubra (Table 3, Fig. 4). The data were ambivalent in

choosing between a logistic and a Gaussian shaped

effect of axis 3 on growth for both species (Table 3). It is

important to note that scientific inference with respect to

axis 3 is consistent whether one uses BMI or MMI: F.

americana is most common where it grows best, and

competition displaces Q. rubra from where it grows best.

Nevertheless, MMI suggests that the different possible

quantitative effects of this axis on growth could be

important, because the magnitude of predicted growth

across the gradient differed considerably among models

in the prediction set (Fig. 4).

The effect of c (i.e., target tree size) on sensitivity to

crowding, in terms of weight of evidence, was consid-

erably more important to Q. rubra (Rx ¼ 0.92) than F.

americana (Rx¼ 0.57). The predicted values of c for Q.

rubra were consistent among alternate models (i.e.,

between �1.698 to �1.876; Appendix, Table A8)

showing a strong decreasing effect of competition on

trees as they got larger. As might be expected for a

parameter without strong support in the data, the
predicted values of c for F. americana varied consid-

erably among alternate models (�0.5 to�2.0; Appendix,
Table A6). The consistency in the estimates of c for Q.

rubra suggest that predictions of this effect based on
only the best model would not differ much from

prediction based on the entire prediction set. The effect
of c is strongly nonlinear, however, and simulations
using model-averaged predictions of both Q. rubra and

F. americana could vary considerably from those based
only on the best models.

DISCUSSION

Variation in potential growth of tree species
along environmental gradients

Our analyses allowed us to explore the relationship

between the fundamental niche of each species as
represented by potential growth (Figs. 3 and 4, heavy

solid lines) and their realized niche as represented by
relative abundance (Figs. 3 and 4, dots) across the

inferred environmental gradients. Both axes showed
clear, but distinct, relationships of shade tolerance
ranking with growth and abundance. Along axis 1

(moisture), the fundamental and realized niches of the
two more shade-tolerant species coincided, but the

realized niche of the less shade-tolerant Q. rubra was
displaced toward the poorer end of the gradient (Fig. 3).

In contrast, only less shade-tolerant species responded to
axis 3 (Fig. 4), and maximum potential growth was at or

near the rich end of the gradient for all four species. All
four species showed varying degrees of displacement of

their realized niches towards the poorer end of the
gradient. The prediction set of models shows similar

qualitative interpretations of these patterns, and our
inference of a relationship between shade tolerance and

patterns of fundamental vs. realized niche displacement
is consistent across all models in the prediction set.

Multi-model inference, however, reveals important
variation among the models in the magnitudes of the

predicted effect of each axis on some species. In
particular, Q. rubra showed considerable variation in

predicted growth along both axes, as did predicted
growth of F. americana and A. rubrum along Axis 3. We
conclude that since several of these key species reach

their peak growth at different points along both
gradients, and because this is consistent across models

in the prediction set, fundamental niche differentiation
sensu Whittaker (1975) plays an important role in

structuring these forests. Nevertheless, there is a
substantial amount of competitive displacement, espe-

cially for less shade-tolerant species.

Variation in competitive effects of neighbors

and competitive responses of target trees

Hubbell’s (2001) neutral model assumes that all
individuals are functionally equivalent competitors,

and works well despite measurable differences among
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species and individuals. It is reasonable to expect,

however, that the model performs better in some

communities than others. Taken together, recent papers

using our approach (Canham et al. 2004, 2006, Uriarte

et al. 2004a, b, and results presented here) suggest that

the assumption of competitive equivalence breaks down

in less diverse forests. Over half of the species examined

in tropical forests of Central America responded to

conspecific vs. interspecific identities of neighboring tree

species equivalently (Uriarte et al. 2004b). In the less

diverse tropical forests of Puerto Rico, and temperate

forests of North America, greater than 95% of the

species examined responded differently to conspecific vs.

interspecific neighbors (Canham et al. 2004, 2006,

Uriarte et al. 2004a). These studies suggest that the

breakdown of the assumption of competitive equiva-

lence occurs at a fairly high level of diversity, since the

tropical rainforest species in Puerto Rico forests showed

similar degrees of sensitivity to the identity of neighbors

as was observed at the temperate forest sites.

Comparisons to forests of northern New England

Canham et al (2006) used similar methods to explore

competitive interactions among tree species of northern

New England (Vermont and New Hampshire), basing

inference solely on the best model (BMI). Both that

study and the results of our analyses from southern New

England were consistent in concluding that maximum

relative abundance of shade intolerant species tended to

be displaced from sites where predicted growth was

greatest, whereas shade-tolerant species showed little if

any displacement. More specifically, the four species in

our analysis that responded to axis 3 (Fig. 4, the putative

fertility gradient) respond to the fertility axis in the same

way in Vermont and New Hampshire forests (Fig. 3 in

Canham et al. 2006).

Consistency between the two studies in results for

both the competitive response of target trees to

neighbors (C, c) and the competitive effects of neighbors

(a, b) were mixed. The magnitudes of two of the four

parameters (a, c) in the two studies were significantly

correlated for the eight species in common (a, Spear-
man’s rS ¼ 0.81, P , 0.025, n ¼ 8; c, Spearman’s rS ¼
0.726, P , 0.03, n¼8), but were not correlated for b and

C. The lack of correspondence of b is not surprising

considering the limitations of plot size. Nor are the

inconsistencies in the estimates of C between the two

studies particularly surprising, since the absolute value

of C reflects scaling of the effects of neighbors by other

parameters. However, the consistency in the predicted

magnitudes of a and c on target tree growth reveals a

remarkable consistency across a broad north-south

gradient in the scaling of the effect of neighboring tree

size on their competitive effect, and in variation in the

sensitivity of target trees to crowding as a function of

their size.

Prediction using multi-model inference

There were clear differences in the predictions of the

best model vs. the averaged model for both target

species at all three sites. The differences were sufficient

to have profound impacts on the results of a simulation

model (Fig. 6). At site A, both BMI and MMI predicted

that the growth of smaller trees decreased dramatically,

as we would expect given the results for c. BMI predicts

much greater growth of F. americana than Q. rubra at all

sizes at this site, whereas MMI suggests that they

converge (that is, given these neighborhood conditions).

At the intermediate (site B) and poor (site C) sites, the

differences between the best model predictions and

model averaged predictions were more dramatic (Fig.

6b, c). At the intermediate site (B), the best model for F.

americana underpredicted growth relative to model

FIG. 6. Example of the importance of model averaging on
predicted growth as a function of tree dbh at three points along
axis 3 with two neighborhoods: (a) a rich site (axis 3¼0.0), near
where Fraxinus americana (FRAM) is most abundant (see Fig.
4); (b) an intermediate site (axis 3 ¼ 0.78), where both species
are roughly equally abundant; and (c) at a poorer site (axis 3¼
1.2), where Quercus rubra (QURU) is most abundant. Each
target tree has eight neighbors at 23.2 cm dbh. Axis 1¼ 1 for all
graphs; b ¼ 0 for all models; therefore, there is no change in
competitive effect with distance; k¼ 1 for all neighbors.
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averaged predictions. These results demonstrate that

both the magnitudes and directions of the differences

between the predictions of the best models and averaged

models can change dramatically along a resource

gradient, even in a relatively simple neighborhood. In

all cases, model averaging resulted in smaller differences

in predicted growth between these two species than

predictions using only the best model. The best model

predicted distinctly higher growth at the rich site for F.

americana and for Q. rubra at the poor site, and thus

seems to perform best at those sites where one species

was clearly more abundant. Our results suggest that

using MMI may be most important at sites where

species are more equal in abundance (Fig. 6b).

BMI selects the model that best explains the observed

data. No other model, or group of models, from the set

of models used in the analysis does a better job of

explaining that data. Therefore, we cannot expect model

averaged predictions to do a better job in predicting the

observed data. In fact, the reverse is actually true. MMI

is a way of hedging bets when model selection

uncertainty is high (i.e., when the differences between

AICs of competing models are less than between 2 to 7

in most cases). Repeated samples drawn from a

population would be expected to select different models

as the best model roughly in proportion to their weights.

Thus, our best estimates for the population from which

the observed data were drawn may be given by MMI,

and predictions of the behavior of the population may

be more accurate using model averaging.

Modern mixed-species uneven-aged silviculture

presents a host of new scientific challenges that require

us to improve our understanding of how tree growth and

survival vary among species across a wide range of stand

structure, community composition, and environmental

conditions. While BMI and MMI showed qualitatively

consistent results for all species in our study, MMI

revealed considerable uncertainties in the predicted

magnitude of growth, especially away from sites where

the species were expected to grow best. We have shown

using a very simple example that predictions based on

model averaging vs. the best models can vary dramat-

ically as site and neighborhood conditions change. Thus,

MMI augments the information in BMI and may lead to

improved predictions of variation in the growth of trees

as a function of site characteristics and local neighbor-

hoods. In the face of imperfect data (and models), our

results suggest that recommendations for forest manage-

ment could benefit from judicious use of MMI.
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